@incollection{UBHD-68973853, author={Bauer, Ulrich and Schmahl, Maximilian}, title={Efficient computation of image persistence}, year={2022}, pages={1-16}, language={eng}, note={Version 1 vom 11 Januar 2022 ; Gesehen am 13.10.2022}, booktitle={De.arxiv.org}, doi={10.48550/arXiv.2201.04170}, } @article{UBHD-69213014, author={Bauer, Ulrich and Medina-Mardones, Anibal M. and Schmahl, Maximilian}, title={Persistent homology for functionals}, year={2023}, language={eng}, issn={0219-1997}, volume={25}, number={Artikel-ID 2350055}, note={Gesehen am 13.05.2024}, journal={Communications in contemporary mathematics}, doi={10.1142/S0219199723500554}, } @incollection{UBHD-68970811, author={Schmahl, Maximilian}, title={Structure of semi-continuous q-tame persistence modules}, edition={Version v2}, year={2022}, pages={1-11}, language={eng}, note={Version 1 vom 21. August 2020, Version 2 vom 2. Juli 2022 ; Gesehen am 06.10.2022}, booktitle={De.arxiv.org}, doi={10.48550/arXiv.2008.09493}, } @book{UBHD-69047476, author={Schmahl, Maximilian}, organization={Universit{\"a}t Heidelberg}, title={Topics in persistent homology}, subtitle={from Morse theory for minimal surfaces to efficient computation of image persistence}, address={Heidelberg}, year={2022}, pages={xi, 132 Seiten}, language={eng}, school={Dissertation, Ruprecht-Karls-Universit{\"a}t Heidelberg, 2022}, keywords={Topologische Datenanalyse}, library={UB [Signatur: 2023 U 156] ; MA [Signatur: Diss. Schmahl]}, } @book{UBHD-69009155, author={Schmahl, Maximilian}, title={Topics in persistent homology}, subtitle={from Morse theory for minimal surfaces to efficient computation of image persistence}, address={Heidelberg}, year={2023}, pages={1 Online-Ressource (xi, 132 Seiten)}, language={eng}, school={Dissertation, Ruprecht–Karls–Universit{\"a}t Heidelberg, 2022}, doi={10.11588/heidok.00032666}, keywords={Topologische Datenanalyse}, url={https://nbn-resolving.org/urn:nbn:de:bsz:16-heidok-326667}, library={UB}, }