Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Titel:EEG gamma frequency and sleep-wake scoring in mice
Titelzusatz:comparing two types of supervised classifiers
Mitwirkende:Brankačk, Jurij   i
 Draguhn, Andreas   i
Verf.angabe:Jurij Brankačk, Valeriy I. Kukushka, Alexei L. Vyssotski, Andreas Draguhn
E-Jahr:2010
Jahr:1 February 2010
Umfang:13 S.
Fussnoten:Gesehen am 12.02.2025
Titel Quelle:Enthalten in: Brain research
Ort Quelle:Amsterdam : Elsevier, 1966
Jahr Quelle:2010
Band/Heft Quelle:1322(2010), Seite 59-71
ISSN Quelle:1872-6240
Abstract:There is growing interest in sleep research and increasing demand for screening of circadian rhythms in genetically modified animals. This requires reliable sleep stage scoring programs. Present solutions suffer, however, from the lack of flexible adaptation to experimental conditions and unreliable selection of stage-discriminating variables. EEG was recorded in freely moving C57BL/6 mice and different sets of frequency variables were used for analysis. Parameters included conventional power spectral density functions as well as period-amplitude analysis. Manual staging was compared with the performance of two different supervised classifiers, linear discriminant analysis (LDA) and Classification Tree. Gamma activity was particularly high during REM (rapid eye movements) sleep and waking. Four out of 73 variables were most effective for sleep-wake stage separation: amplitudes of upper gamma-, delta- and upper theta-frequency bands and neck muscle EMG. Using small sets of training data, LDA produced better results than Classification Tree or a conventional threshold formula. Changing epoch duration (4 to 10s) had only minor effects on performance with 8 to 10s yielding the best results. Gamma and upper theta activity during REM sleep is particularly useful for sleep-wake stage separation. Linear discriminant analysis performs best in supervised automatic staging procedures. Reliable semi-automatic sleep scoring with LDA substantially reduces analysis time.
DOI:doi:10.1016/j.brainres.2010.01.069
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.brainres.2010.01.069
 Volltext: https://www.sciencedirect.com/science/article/pii/S0006899310002234
 Volltext: http://www.sciencedirect.com/science/article/pii/S0006899310002234
 DOI: https://doi.org/10.1016/j.brainres.2010.01.069
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:EEG frequency
 Gamma activity
 Linear discriminant analysis
 Period-amplitude analysis
 Sleep stage scoring
 Theta activity
K10plus-PPN:1486336981
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/67694934   QR-Code
zum Seitenanfang