Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Resch, Bernd [VerfasserIn]   i
 Usländer, Florian [VerfasserIn]   i
 Havas, Clemens [VerfasserIn]   i
Titel:Combining machine-learning topic models and spatiotemporal analysis of social media data for disaster footprint and damage assessment
Verf.angabe:Bernd Resch, Florian Usländer & Clemens Havas
E-Jahr:2017
Jahr:03 Aug 2017
Umfang:15 S.
Fussnoten:Gesehen am 03.08.2017
Titel Quelle:Enthalten in: Cartography and geographic information science
Ort Quelle:Abingdon : Taylor & Francis, 1999
Jahr Quelle:2018
Band/Heft Quelle:45(2018), 4, Seite 362-376
ISSN Quelle:1545-0465
Abstract:Current disaster management procedures to cope with human and economic losses and to manage a disaster’s aftermath suffer from a number of shortcomings like high temporal lags or limited temporal and spatial resolution. This paper presents an approach to analyze social media posts to assess the footprint of and the damage caused by natural disasters through combining machine-learning techniques (Latent Dirichlet Allocation) for semantic information extraction with spatial and temporal analysis (local spatial autocorrelation) for hot spot detection. Our results demonstrate that earthquake footprints can be reliably and accurately identified in our use case. More, a number of relevant semantic topics can be automatically identified without a priori knowledge, revealing clearly differing temporal and spatial signatures. Furthermore, we are able to generate a damage map that indicates where significant losses have occurred. The validation of our results using statistical measures, complemented by the official earthquake footprint by US Geological Survey and the results of the HAZUS loss model, shows that our approach produces valid and reliable outputs. Thus, our approach may improve current disaster management procedures through generating a new and unseen information layer in near real time.
DOI:doi:10.1080/15230406.2017.1356242
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: http://dx.doi.org/10.1080/15230406.2017.1356242
 DOI: https://doi.org/10.1080/15230406.2017.1356242
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:disaster management
 machine-learning
 semantic topic analysis
 Social media
 spatiotemporal analysis
K10plus-PPN:1561702706
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68146082   QR-Code
zum Seitenanfang