Status: Bibliographieeintrag
Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Petrovici, Mihai A. [VerfasserIn]  |
| Bill, Johannes [VerfasserIn]  |
| Bytschok, Ilja [VerfasserIn]  |
| Schemmel, Johannes [VerfasserIn]  |
| Meier, Karlheinz [VerfasserIn]  |
Titel: | Stochastic inference with spiking neurons in the high-conductance state |
Verf.angabe: | Mihai A. Petrovici, Johannes Bill, Ilja Bytschok, Johannes Schemmel, and Karlheinz Meier |
Fussnoten: | Gesehen am 15.08.2017 |
Titel Quelle: | Enthalten in: Physical review |
Jahr Quelle: | 2016 |
Band/Heft Quelle: | 94(2016,4) Artikel-Nummer 042312, 14 Seiten |
ISSN Quelle: | 2470-0053 |
Abstract: | The highly variable dynamics of neocortical circuits observed in vivo have been hypothesized to represent a signature of ongoing stochastic inference but stand in apparent contrast to the deterministic response of neurons measured in vitro. Based on a propagation of the membrane autocorrelation across spike bursts, we provide an analytical derivation of the neural activation function that holds for a large parameter space, including the high-conductance state. On this basis, we show how an ensemble of leaky integrate-and-fire neurons with conductance-based synapses embedded in a spiking environment can attain the correct firing statistics for sampling from a well-defined target distribution. For recurrent networks, we examine convergence toward stationarity in computer simulations and demonstrate sample-based Bayesian inference in a mixed graphical model. This points to a new computational role of high-conductance states and establishes a rigorous link between deterministic neuron models and functional stochastic dynamics on the network level. |
DOI: | doi:10.1103/PhysRevE.94.042312 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Verlag: http://dx.doi.org/10.1103/PhysRevE.94.042312 |
| Verlag: https://link.aps.org/doi/10.1103/PhysRevE.94.042312 |
| DOI: https://doi.org/10.1103/PhysRevE.94.042312 |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 1562447858 |
Verknüpfungen: | → Zeitschrift |
Stochastic inference with spiking neurons in the high-conductance state / Petrovici, Mihai A. [VerfasserIn] (Online-Ressource)
68150296