Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Ohlmann, Sebastian T. [VerfasserIn]   i
 Röpke, Friedrich [VerfasserIn]   i
 Springel, Volker [VerfasserIn]   i
Titel:Hydrodynamic moving-mesh simulations of the common envelope phase in binary stellar systems
Verf.angabe:Sebastian T. Ohlmann, Friedrich K. Röpke, Rüdiger Pakmor, and Volker Springel
E-Jahr:2016
Jahr:2015 December 30
Umfang:6 S.
Fussnoten:Gesehen am 29.08.2017
Titel Quelle:Enthalten in: The astrophysical journal / 2
Ort Quelle:London : Institute of Physics Publ., 1995
Jahr Quelle:2016
Band/Heft Quelle:816(2016,1) Artikel-Nummer L9, 6 Seiten
ISSN Quelle:2041-8213
Abstract:The common envelope (CE) phase is an important stage in binary stellar evolution. It is needed to explain many close binary stellar systems, such as cataclysmic variables, SN Ia progenitors, or X-ray binaries. To form the resulting close binary, the initial orbit has to shrink, thereby transferring energy to the primary giant’s envelope that is hence ejected. The details of this interaction, however, are still not understood. Here, we present new hydrodynamic simulations of the dynamical spiral-in forming a CE system. We apply the moving-mesh code arepo to follow the interaction of a ##IMG## [http://ej.iop.org/images/2041-8205/816/1/L9/apjl522210ieqn1.gif] $1M_ødot $ compact star with a ##IMG## [http://ej.iop.org/images/2041-8205/816/1/L9/apjl522210ieqn2.gif] $2M_ødot $ red giant possessing a ##IMG## [http://ej.iop.org/images/2041-8205/816/1/L9/apjl522210ieqn3.gif] $0.4M_ødot $ core. The nearly Lagrangian scheme combines advantages of smoothed particle hydrodynamics and traditional grid-based hydrodynamic codes and allows us to capture also small flow features at high spatial resolution. Our simulations reproduce the initial transfer of energy and angular momentum from the binary core to the envelope by spiral shocks seen in previous studies, but after about 20 orbits a new phenomenon is observed. Large-scale flow instabilities are triggered by shear flows between adjacent shock layers. These indicate the onset of turbulent convection in the CE, thus altering the transport of energy on longer timescales. At the end of our simulation, only 8% of the envelope mass is ejected. The failure to unbind the envelope completely may be caused by processes on thermal timescales or unresolved microphysics.
DOI:doi:10.3847/2041-8205/816/1/L9
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Kostenfrei: Volltext ; Verlag: http://dx.doi.org/10.3847/2041-8205/816/1/L9
 Kostenfrei: Volltext: http://stacks.iop.org/2041-8205/816/i=1/a=L9
 DOI: https://doi.org/10.3847/2041-8205/816/1/L9
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1562877542
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68154868   QR-Code
zum Seitenanfang