Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Pesonen, Maiju [VerfasserIn]   i
 März, Winfried [VerfasserIn]   i
Titel:Differential network analysis with multiply imputed lipidomic data
Verf.angabe:Maiju Kujala, Jaakko Nevalainen, Winfried März, Reijo Laaksonen, Susmita Datta
E-Jahr:2015
Jahr:March 30, 2015
Umfang:18 S.
Fussnoten:Gesehen am 05.10.2017
Titel Quelle:Enthalten in: PLOS ONE
Ort Quelle:San Francisco, California, US : PLOS, 2006
Jahr Quelle:2015
Band/Heft Quelle:10(2015,3) Artikel-Nummer e0121449, 18 Seiten
ISSN Quelle:1932-6203
Abstract:The importance of lipids for cell function and health has been widely recognized, e.g., a disorder in the lipid composition of cells has been related to atherosclerosis caused cardiovascular disease (CVD). Lipidomics analyses are characterized by large yet not a huge number of mutually correlated variables measured and their associations to outcomes are potentially of a complex nature. Differential network analysis provides a formal statistical method capable of inferential analysis to examine differences in network structures of the lipids under two biological conditions. It also guides us to identify potential relationships requiring further biological investigation. We provide a recipe to conduct permutation test on association scores resulted from partial least square regression with multiple imputed lipidomic data from the LUdwigshafen RIsk and Cardiovascular Health (LURIC) study, particularly paying attention to the left-censored missing values typical for a wide range of data sets in life sciences. Left-censored missing values are low-level concentrations that are known to exist somewhere between zero and a lower limit of quantification. To make full use of the LURIC data with the missing values, we utilize state of the art multiple imputation techniques and propose solutions to the challenges that incomplete data sets bring to differential network analysis. The customized network analysis helps us to understand the complexities of the underlying biological processes by identifying lipids and lipid classes that interact with each other, and by recognizing the most important differentially expressed lipids between two subgroups of coronary artery disease (CAD) patients, the patients that had a fatal CVD event and the ones who remained stable during two year follow-up.
DOI:doi:10.1371/journal.pone.0121449
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: http://dx.doi.org/10.1371/journal.pone.0121449
 kostenfrei: Volltext: http://journals.plos.org.ezproxy.medma.uni-heidelberg.de/plosone/article?id=10.1371/journal.pone.0121449
 DOI: https://doi.org/10.1371/journal.pone.0121449
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Cardiovascular diseases
 Cholesterol
 Lipid analysis
 Lipids
 Lipid structure
 Network analysis
 Permutation
 Test statistics
K10plus-PPN:1564097544
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68175917   QR-Code
zum Seitenanfang