Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Scherer, Moritz [VerfasserIn]   i
 Younsi, Alexander [VerfasserIn]   i
 Möhlenbruch, Markus Alfred [VerfasserIn]   i
 Stock, Christian [VerfasserIn]   i
 Bösel, Julian [VerfasserIn]   i
 Unterberg, Andreas [VerfasserIn]   i
 Orakcioglu, Berk [VerfasserIn]   i
Titel:Development and validation of an automatic segmentation algorithm for quantification of intracerebral hemorrhage
Verf.angabe:Moritz Scherer, MD; Jonas Cordes, MSc; Alexander Younsi, MD; Yasemin-Aylin Sahin, MS; Michael Götz, MSc; Markus Möhlenbruch, MD; Christian Stock, MSc, PhD; Julian Bösel, MD; Andreas Unterberg, MD, PhD; Klaus Maier-Hein, MSc, PhD; Berk Orakcioglu, MD
E-Jahr:2016
Jahr:August 29, 2016
Umfang:7 S.
Fussnoten:Gesehen am 01.12.2017
Titel Quelle:Enthalten in: Stroke
Ort Quelle:New York, NY : Association, 1970
Jahr Quelle:2016
Band/Heft Quelle:47(2016), 11, Seite 2776-2782
ISSN Quelle:1524-4628
Abstract:Background and Purpose—ABC/2 is still widely accepted for volume estimations in spontaneous intracerebral hemorrhage (ICH) despite known limitations, which potentially accounts for controversial outcome-study results. The aim of this study was to establish and validate an automatic segmentation algorithm, allowing for quick and accurate quantification of ICH. Methods—A segmentation algorithm implementing first- and second-order statistics, texture, and threshold features was trained on manual segmentations with a random-forest methodology. Quantitative data of the algorithm, manual segmentations, and ABC/2 were evaluated for agreement in a study sample (n=28) and validated in an independent sample not used for algorithm training (n=30). Results—ABC/2 volumes were significantly larger compared with either manual or algorithm values, whereas no significant differences were found between the latter (P<0.0001; Friedman+Dunn’s multiple comparison). Algorithm agreement with the manual reference was strong (concordance correlation coefficient 0.95 [lower 95% confidence interval 0.91]) and superior to ABC/2 (concordance correlation coefficient 0.77 [95% confidence interval 0.64]). Validation confirmed agreement in an independent sample (algorithm concordance correlation coefficient 0.99 [95% confidence interval 0.98], ABC/2 concordance correlation coefficient 0.82 [95% confidence interval 0.72]). The algorithm was closer to respective manual segmentations than ABC/2 in 52/58 cases (89.7%). Conclusions—An automatic segmentation algorithm for volumetric analysis of spontaneous ICH was developed and validated in this study. Algorithm measurements showed strong agreement with manual segmentations, whereas ABC/2 exhibited its limitations, yielding inaccurate overestimations of ICH volume. The refined, yet time-efficient, quantification of ICH by the algorithm may facilitate evaluation of clot volume as an outcome predictor and trigger for surgical interventions in the clinical setting.
DOI:doi:10.1161/STROKEAHA.116.013779
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: http://dx.doi.org/10.1161/STROKEAHA.116.013779
 kostenfrei: Volltext: http://stroke.ahajournals.org/content/47/11/2776
 DOI: https://doi.org/10.1161/STROKEAHA.116.013779
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:computed tomography
 computer-assisted image analysis
 intracerebral hemorrhage
 machine learning
 volumetric analysis
K10plus-PPN:1565949781
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68196538   QR-Code
zum Seitenanfang