| Online-Ressource |
Verfasst von: | Scherer, Moritz [VerfasserIn]  |
| Younsi, Alexander [VerfasserIn]  |
| Möhlenbruch, Markus Alfred [VerfasserIn]  |
| Stock, Christian [VerfasserIn]  |
| Bösel, Julian [VerfasserIn]  |
| Unterberg, Andreas [VerfasserIn]  |
| Orakcioglu, Berk [VerfasserIn]  |
Titel: | Development and validation of an automatic segmentation algorithm for quantification of intracerebral hemorrhage |
Verf.angabe: | Moritz Scherer, MD; Jonas Cordes, MSc; Alexander Younsi, MD; Yasemin-Aylin Sahin, MS; Michael Götz, MSc; Markus Möhlenbruch, MD; Christian Stock, MSc, PhD; Julian Bösel, MD; Andreas Unterberg, MD, PhD; Klaus Maier-Hein, MSc, PhD; Berk Orakcioglu, MD |
E-Jahr: | 2016 |
Jahr: | August 29, 2016 |
Umfang: | 7 S. |
Fussnoten: | Gesehen am 01.12.2017 |
Titel Quelle: | Enthalten in: Stroke |
Ort Quelle: | New York, NY : Association, 1970 |
Jahr Quelle: | 2016 |
Band/Heft Quelle: | 47(2016), 11, Seite 2776-2782 |
ISSN Quelle: | 1524-4628 |
Abstract: | Background and Purpose—ABC/2 is still widely accepted for volume estimations in spontaneous intracerebral hemorrhage (ICH) despite known limitations, which potentially accounts for controversial outcome-study results. The aim of this study was to establish and validate an automatic segmentation algorithm, allowing for quick and accurate quantification of ICH. Methods—A segmentation algorithm implementing first- and second-order statistics, texture, and threshold features was trained on manual segmentations with a random-forest methodology. Quantitative data of the algorithm, manual segmentations, and ABC/2 were evaluated for agreement in a study sample (n=28) and validated in an independent sample not used for algorithm training (n=30). Results—ABC/2 volumes were significantly larger compared with either manual or algorithm values, whereas no significant differences were found between the latter (P<0.0001; Friedman+Dunn’s multiple comparison). Algorithm agreement with the manual reference was strong (concordance correlation coefficient 0.95 [lower 95% confidence interval 0.91]) and superior to ABC/2 (concordance correlation coefficient 0.77 [95% confidence interval 0.64]). Validation confirmed agreement in an independent sample (algorithm concordance correlation coefficient 0.99 [95% confidence interval 0.98], ABC/2 concordance correlation coefficient 0.82 [95% confidence interval 0.72]). The algorithm was closer to respective manual segmentations than ABC/2 in 52/58 cases (89.7%). Conclusions—An automatic segmentation algorithm for volumetric analysis of spontaneous ICH was developed and validated in this study. Algorithm measurements showed strong agreement with manual segmentations, whereas ABC/2 exhibited its limitations, yielding inaccurate overestimations of ICH volume. The refined, yet time-efficient, quantification of ICH by the algorithm may facilitate evaluation of clot volume as an outcome predictor and trigger for surgical interventions in the clinical setting. |
DOI: | doi:10.1161/STROKEAHA.116.013779 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
kostenfrei: Volltext: http://dx.doi.org/10.1161/STROKEAHA.116.013779 |
| kostenfrei: Volltext: http://stroke.ahajournals.org/content/47/11/2776 |
| DOI: https://doi.org/10.1161/STROKEAHA.116.013779 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | computed tomography |
| computer-assisted image analysis |
| intracerebral hemorrhage |
| machine learning |
| volumetric analysis |
K10plus-PPN: | 1565949781 |
Verknüpfungen: | → Zeitschrift |
Development and validation of an automatic segmentation algorithm for quantification of intracerebral hemorrhage / Scherer, Moritz [VerfasserIn]; August 29, 2016 (Online-Ressource)