Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Kassianidou, Elena [VerfasserIn]   i
 Brand, Christoph A. [VerfasserIn]   i
 Schwarz, Ulrich S. [VerfasserIn]   i
Titel:Geometry and network connectivity govern the mechanics of stress fibers
Verf.angabe:Elena Kassianidou, Christoph A. Brand, Ulrich S. Schwarz, and Sanjay Kumar
Umfang:6 S.
Fussnoten:Gesehen am 07.12.2017
Titel Quelle:Enthalten in: National Academy of Sciences (Washington, DC): Proceedings of the National Academy of Sciences of the United States of America
Jahr Quelle:2016
Band/Heft Quelle:114(2017), 10, S. 2622-2627
ISSN Quelle:1091-6490
Abstract:Actomyosin stress fibers (SFs) play key roles in driving polarized motility and generating traction forces, yet little is known about how tension borne by an individual SF is governed by SF geometry and its connectivity to other cytoskeletal elements. We now address this question by combining single-cell micropatterning with subcellular laser ablation to probe the mechanics of single, geometrically defined SFs. The retraction length of geometrically isolated SFs after cutting depends strongly on SF length, demonstrating that longer SFs dissipate more energy upon incision. Furthermore, when cell geometry and adhesive spacing are fixed, cell-to-cell heterogeneities in SF dissipated elastic energy can be predicted from varying degrees of physical integration with the surrounding network. We apply genetic, pharmacological, and computational approaches to demonstrate a causal and quantitative relationship between SF connectivity and mechanics for patterned cells and show that similar relationships hold for nonpatterned cells allowed to form cell-cell contacts in monolayer culture. Remarkably, dissipation of a single SF within a monolayer induces cytoskeletal rearrangements in cells long distances away. Finally, stimulation of cell migration leads to characteristic changes in network connectivity that promote SF bundling at the cell rear. Our findings demonstrate that SFs influence and are influenced by the networks in which they reside. Such higher order network interactions contribute in unexpected ways to cell mechanics and motility.
DOI:doi:10.1073/pnas.1606649114
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Kostenfrei: Verlag: http://dx.doi.org/10.1073/pnas.1606649114
 Kostenfrei: Verlag: http://www.pnas.org/content/114/10/2622
 DOI: https://doi.org/10.1073/pnas.1606649114
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1566131561
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68199211   QR-Code
zum Seitenanfang