Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Bauer, Martin [VerfasserIn]   i
 Neubert, Matthias [VerfasserIn]   i
Titel:Flavor physics in the Randall-Sundrum model
Titelzusatz:II. tree-level weak-interaction processes
Verf.angabe:M. Bauer, S. Casagrande, U. Haisch and M. Neubert
Fussnoten:Gesehen am 11.01.2018
Titel Quelle:Enthalten in: De.arxiv.org
Jahr Quelle:2010
Band/Heft Quelle:(2010) Artikel-Nummer 0912.1625, 113 Seiten
Abstract:A comprehensive analysis of tree-level weak interaction processes at low energy is presented for the Randall-Sundrum (RS) model with SU(2)_L * U(1)_Y bulk gauge symmetry and brane-localized Higgs sector. The complete form of the effective weak Hamiltonian is obtained, which results from tree-level exchange of Kaluza-Klein (KK) gluons and photons, the W^+- and Z^0 bosons and their KK excitations, as well as the Higgs boson. Exact expressions are used for the bulk profiles of the various fields, and for the exchange of entire towers of KK gauge-boson states. A detailed phenomenological analysis is performed for potential new-physics effects in neutral-meson mixing and in rare decays of kaons and B mesons, including both inclusive and exclusive processes. We find that while the predictions for \Delta(F)=2 observables are rather model-independent, \Delta(F)=1 processes depend sensitively on the exact realizations of the electroweak gauge and the fermionic sector. In this context,we emphasize that the localization of the right-handed top quark in the extra dimension plays a crucial role in the case of rare Z^0-mediated decays, as it determines the relative size of left- to right-handed couplings. We also extend earlier studies of quark flavor-changing neutral currents by examining observables which up to now attracted little attention. These include D-D(bar) mixing, B-->\tau\nu, B-->X_s (K^*) l^+ l^-, \epsilon_K'/\epsilon_K, B-->\pi K, B^0-->\phi K_S, B^0-->\eta' K_S, and B^+-->\pi^+\pi^0.
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Kostenfrei: Verlag: http://arxiv.org/abs/0912.1625
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1567048382
Verknüpfungen:→ Sammelwerk

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68208647   QR-Code
zum Seitenanfang