Status: Bibliographieeintrag
Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Lee, Young K. [VerfasserIn]  |
| Mammen, Enno [VerfasserIn]  |
| Nielsen, Jens Perch [VerfasserIn]  |
| Park, Byeong U. [VerfasserIn]  |
Titel: | Operational time and in-sample density forecasting |
Verf.angabe: | Young K. Lee, Enno Mammen, Jens P. Nielsen, Byeong U. Park |
Umfang: | 30 S. |
Fussnoten: | Gesehen am 29.01.2018 |
Titel Quelle: | Enthalten in: The annals of statistics |
Jahr Quelle: | 2017 |
Band/Heft Quelle: | 45(2017), 3, S. 1312-1341 |
ISSN Quelle: | 2168-8966 |
Abstract: | In this paper, we consider a new structural model for in-sample density forecasting. In-sample density forecasting is to estimate a structured density on a region where data are observed and then reuse the estimated structured density on some region where data are not observed. Our structural assumption is that the density is a product of one-dimensional functions with one function sitting on the scale of a transformed space of observations. The transformation involves another unknown one-dimensional function, so that our model is formulated via a known smooth function of three underlying unknown one-dimensional functions. We present an innovative way of estimating the one-dimensional functions and show that all the estimators of the three components achieve the optimal one-dimensional rate of convergence. We illustrate how one can use our approach by analyzing a real dataset, and also verify the tractable finite sample performance of the method via a simulation study. |
DOI: | doi:10.1214/16-AOS1486 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Kostenfrei: Verlag: http://dx.doi.org/10.1214/16-AOS1486 |
| Kostenfrei: Verlag: https://projecteuclid.org/euclid.aos/1497319696 |
| Kostenfrei: Verlag: https://projecteuclid.org/download/pdfview_1/euclid.aos/1497319696 |
| DOI: https://doi.org/10.1214/16-AOS1486 |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 1567801870 |
Verknüpfungen: | → Zeitschrift |
Operational time and in-sample density forecasting / Lee, Young K. [VerfasserIn] (Online-Ressource)
68214457