Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Bühring, Wolfgang [VerfasserIn]   i
Titel:Second-order linear differential equations with two irregular singular points of rank three
Titelzusatz:the characteristic exponent
Verf.angabe:Wolfgang Bühring, Physikalisches Institut, Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg, Germany
Umfang:27 S.
Fussnoten:Gesehen am 20.02.2018
Titel Quelle:Enthalten in: Journal of computational and applied mathematics
Jahr Quelle:2000
Band/Heft Quelle:118(2000), 1, S. 43-69
ISSN Quelle:1879-1778
Abstract:For a second-order linear differential equation with two irregular singular points of rank three, multiple Laplace-type contour integral solutions are considered. An explicit formula in terms of the Stokes multipliers is derived for the characteristic exponent of the multiplicative solutions. The Stokes multipliers are represented by converging series with terms for which limit formulas as well as more detailed asymptotic expansions are available. Here certain new, recursively known coefficients enter, which are closely related to but different from the coefficients of the formal solutions at one of the irregular singular points of the differential equation. The coefficients of the formal solutions then appear as finite sums over subsets of the new coefficients. As a by-product, the leading exponential terms of the asymptotic behaviour of the late coefficients of the formal solutions are given, and this is a concrete example of the structural results obtained by Immink in a more general setting. The formulas displayed in this paper are not of merely theoretical interest, but they also are complete in the sense that they could be (and have been) implemented for computing accurate numerical values of the characteristic exponent, although the computational load is not small and increases with the rank of the singular point under consideration.
DOI:doi:10.1016/S0377-0427(00)00281-8
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Verlag: http://dx.doi.org/10.1016/S0377-0427(00)00281-8
 Verlag: http://www.sciencedirect.com/science/article/pii/S0377042700002818
 DOI: https://doi.org/10.1016/S0377-0427(00)00281-8
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1570000239
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68222316   QR-Code
zum Seitenanfang