Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Westerholt, René [VerfasserIn]   i
 Resch, Bernd [VerfasserIn]   i
 Mocnik, Franz-Benjamin [VerfasserIn]   i
 Hoffmeister, Dirk [VerfasserIn]   i
Titel:A statistical test on the local effects of spatially structured variance
Verf.angabe:Rene Westerholt, Bernd Resch, Franz-Benjamin Mocnik, Dirk Hoffmeister
Jahr:2018
Umfang:10 S.
Fussnoten:Gesehen am 26.02.2018
Titel Quelle:Enthalten in: International journal of geographical information science
Ort Quelle:London : Taylor & Francis, 1987
Jahr Quelle:2018
Band/Heft Quelle:32(2018), 3, Seite 571-600
ISSN Quelle:1365-8824
Abstract:Spatial variance is an important characteristic of spatial random variables. It describes local deviations from average global conditions and is thus a proxy for spatial heterogeneity. Investigating instability in spatial variance is a useful way of detecting spatial boundaries, analysing the internal structure of spatial clusters and revealing simultaneously acting geographic phenomena. Recently, a corresponding test statistic called ‘Local Spatial Heteroscedasticity’ (LOSH) has been proposed. This test allows locally heterogeneous regions to be mapped and investigated by comparing them with the global average mean deviation in a data set. While this test is useful in stationary conditions, its value is limited in a global heterogeneous state. There is a risk that local structures might be overlooked and wrong inferences drawn. In this paper, we introduce a test that takes account of global spatial heterogeneity in assessing local spatial effects. The proposed measure, which we call ‘Local Spatial Dispersion’ (LSD), adapts LOSH to local conditions by omitting global information beyond the range of the local neighbourhood and by keeping the related inferential procedure at a local level. Thereby, the local neighbourhoods might be small and cause small-sample issues. In the view of this, we recommend an empirical Bayesian technique to increase the data that is available for resampling by employing empirical prior knowledge. The usefulness of this approach is demonstrated by applying it to a Light Detection and Ranging-derived data set with height differences and by making a comparison with LOSH. Our results show that LSD is uncorrelated with non-spatial variance as well as local spatial autocorrelation. It thus discloses patterns that would be missed by LOSH or indicators of spatial autocorrelation. Furthermore, the empirical outcomes suggest that interpreting LOSH and LSD together is of greater value than interpreting each of the measures individually. In the given example, local interactions can be statistically detected between variance and spatial patterns in the presence of global structuring, and thus reveal details that might otherwise be overlooked.
DOI:doi:10.1080/13658816.2017.1402914
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: http://dx.doi.org/10.1080/13658816.2017.1402914
 Volltext: https://doi.org/10.1080/13658816.2017.1402914
 DOI: https://doi.org/10.1080/13658816.2017.1402914
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Spatial analysis
 spatial heterogeneity
 spatial hypothesis testing
 spatial non-stationarity
K10plus-PPN:1570197032
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68223945   QR-Code
zum Seitenanfang