Status: Bibliographieeintrag
Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Chantesana, Isara [VerfasserIn]  |
| Piñeiro Orioli, Asier [VerfasserIn]  |
| Gasenzer, Thomas [VerfasserIn]  |
Titel: | Kinetic theory of non-thermal fixed points in a Bose gas |
Verf.angabe: | Isara Chantesana, Asier Piñeiro Orioli, and Thomas Gasenzer |
E-Jahr: | 2018 |
Jahr: | 29 Jan 2018 |
Umfang: | 42 S. |
Fussnoten: | Identifizierung der Ressource nach: Last revised 14 May 2019 ; Gesehen am 08.12.2020 |
Titel Quelle: | Enthalten in: De.arxiv.org |
Ort Quelle: | [S.l.] : Arxiv.org, 1991 |
Jahr Quelle: | 2018 |
Band/Heft Quelle: | (2018) Artikel-Nummer 1801.09490, 42 Seiten |
Abstract: | We outline a kinetic theory of non-thermal fixed points for the example of a dilute Bose gas, partially reviewing results obtained earlier, thereby extending, complementing, generalizing and straightening them out. We study universal dynamics after a cooling quench, focusing on situations where the time evolution represents a pure rescaling of spatial correlations, with time defining the scale parameter. The non-equilibrium initial condition set by the quench induces a redistribution of particles in momentum space. Depending on conservation laws, this can take the form of a wave-turbulent flux or of a more general self-similar evolution, signaling the critically slowed approach to a non-thermal fixed point. We identify such fixed points using a non-perturbative kinetic theory of collective scattering between highly occupied long-wavelength modes. In contrast, a wave-turbulent flux, possible in the perturbative Boltzmann regime, builds up in a critically accelerated self-similar manner. A key result is the simple analytical universal scaling form of the non-perturbative many-body scattering matrix, for which we lay out the concrete conditions under which it applies. We derive the scaling exponents for the time evolution as well as for the power-law tail of the momentum distribution function, for a general dynamical critical exponent $z$ and an anomalous scaling dimension $\eta$. The approach of the non-thermal fixed point is, in particular, found to involve a rescaling of momenta in time $t$ by $t^{\beta}$, with $\beta=1/z$, within our kinetic approach independent of $\eta$. We confirm our analytical predictions by numerically evaluating the kinetic scattering integral as well as the non-perturbative many-body coupling function. As a side result we obtain a possible finite-size interpretation of wave-turbulent scaling recently measured by Navon et al. |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Kostenfrei: Volltext: http://arxiv.org/abs/1801.09490 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | Condensed Matter - Statistical Mechanics |
| High Energy Physics - Phenomenology |
| Condensed Matter - Quantum Gases |
| Physics - Fluid Dynamics |
K10plus-PPN: | 1570674647 |
Verknüpfungen: | → Sammelwerk |
Kinetic theory of non-thermal fixed points in a Bose gas / Chantesana, Isara [VerfasserIn]; 29 Jan 2018 (Online-Ressource)
68228517