Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Dutilh, Gilles [VerfasserIn]   i
 Lerche, Veronika [VerfasserIn]   i
 Voß, Andreas [VerfasserIn]   i
Titel:The quality of response time data inference
Titelzusatz:a blinded, collaborative assessment of the validity of cognitive models
Verf.angabe:Gilles Dutilh, Jeffrey Annis, Scott D. Brown, Peter Cassey, Nathan J. Evans, Raoul P. P. P. Grasman, Guy E. Hawkins, Andrew Heathcote, William R. Holmes, Angelos-Miltiadis Krypotos, Colin N. Kupitz, Fábio P. Leite, Veronika Lerche, Yi-Shin Lin, Gordon D. Logan, Thomas J. Palmeri, Jeffrey J. Starns, Jennifer S. Trueblood, Leendert van Maanen, Don van Ravenzwaaij, Joachim Vandekerckhove, Ingmar Visser, Andreas Voss, Corey N. White, Thomas V. Wiecki, Jörg Rieskamp, Chris Donkin
E-Jahr:2019
Jahr:2018
Umfang:19 S.
Fussnoten:Published online: 15 February 2018 ; Gesehen am 05.10.2020
Titel Quelle:Enthalten in: Psychonomic bulletin & review
Ort Quelle:New York, NY : Springer, 1994
Jahr Quelle:2019
Band/Heft Quelle:26(2019), 4, Seite 1051–1069
ISSN Quelle:1531-5320
Abstract:Most data analyses rely on models. To complement statistical models, psychologists have developed cognitive models, which translate observed variables into psychologically interesting constructs. Response time models, in particular, assume that response time and accuracy are the observed expression of latent variables including 1) ease of processing, 2) response caution, 3) response bias, and 4) non-decision time. Inferences about these psychological factors hinge upon the validity of the models’ parameters. Here, we use a blinded, collaborative approach to assess the validity of such model-based inferences. Seventeen teams of researchers analyzed the same 14 data sets. In each of these two-condition data sets, we manipulated properties of participants’ behavior in a two-alternative forced choice task. The contributing teams were blind to the manipulations, and had to infer what aspect of behavior was changed using their method of choice. The contributors chose to employ a variety of models, estimation methods, and inference procedures. Our results show that, although conclusions were similar across different methods, these "modeler’s degrees of freedom" did affect their inferences. Interestingly, many of the simpler approaches yielded as robust and accurate inferences as the more complex methods. We recommend that, in general, cognitive models become a typical analysis tool for response time data. In particular, we argue that the simpler models and procedures are sufficient for standard experimental designs. We finish by outlining situations in which more complicated models and methods may be necessary, and discuss potential pitfalls when interpreting the output from response time models.
DOI:doi:10.3758/s13423-017-1417-2
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: http://dx.doi.org/10.3758/s13423-017-1417-2
 Volltext: https://link.springer.com/article/10.3758/s13423-017-1417-2
 DOI: https://doi.org/10.3758/s13423-017-1417-2
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1571522794
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68237256   QR-Code
zum Seitenanfang