Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Gasenzer, Thomas [VerfasserIn]   i
 Nachtmann, Otto [VerfasserIn]   i
 Trappe, Martin-Isbjörn [VerfasserIn]   i
Titel:Metastable states of hydrogen
Titelzusatz:their geometric phases and flux densities
Verf.angabe:T. Gasenzer, O. Nachtmann, and M.-I. Trappe
Fussnoten:Gesehen am 04.04.2018
Titel Quelle:Enthalten in: The European physical journal / D
Jahr Quelle:2012
Band/Heft Quelle:66(2012,5) Artikel-Nummer 113, 23 Seiten
ISSN Quelle:1434-6079
Abstract:We discuss the geometric phases and flux densities for the metastable states of hydrogen with principal quantum number n = 2 being subjected to adiabatically varying external electric and magnetic fields. Convenient representations of the flux densities as complex integrals are derived. Both, parity conserving (PC) and parity violating (PV) flux densities and phases are identified. General expressions for the flux densities following from rotational invariance are derived. Specific cases of external fields are discussed. In a pure magnetic field the phases are given by the geometry of the path in magnetic field space. But for electric fields in presence of a constant magnetic field and for electric plus magnetic fields the geometric phases carry information on the atomic parameters, in particular, on the PV atomic interaction. We show that for our metastable states also the decay rates can be influenced by the geometric phases and we give a concrete example for this effect. Finally we emphasise that the general relations derived here for geometric phases and flux densities are also valid for other atomic systems having stable or metastable states, for instance, for He with n = 2. Thus, a measurement of geometric phases may give important experimental information on the mass matrix and the electric and magnetic dipole matrices for such systems. This could be used as a check of corresponding theoretical calculations of wave functions and matrix elements.
DOI:doi:10.1140/epjd/e2012-20465-2
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Verlag: http://dx.doi.org/10.1140/epjd/e2012-20465-2
 Verlag: https://link.springer.com/article/10.1140/epjd/e2012-20465-2
 DOI: https://doi.org/10.1140/epjd/e2012-20465-2
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1571668845
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68239008   QR-Code
zum Seitenanfang