Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Berger, Johannes Peter [VerfasserIn]   i
 Lenzen, Frank [VerfasserIn]   i
 Becker, Florian [VerfasserIn]   i
 Neufeld, Andreas [VerfasserIn]   i
 Schnörr, Christoph [VerfasserIn]   i
Titel:Second-order recursive filtering on the rigid-motion Lie group SE3 based on nonlinear observations
Verf.angabe:Johannes Berger, Frank Lenzen, Florian Becker, Andreas Neufeld, Christoph Schnörr
Umfang:28 S.
Fussnoten:Gesehen am 26.04.2018
Titel Quelle:Enthalten in: Journal of mathematical imaging and vision
Jahr Quelle:2016
Band/Heft Quelle:58(2017), 1, S. 102-129
ISSN Quelle:1573-7683
Abstract:Camera motion estimation from observed scene features is an important task in image processing to increase the accuracy of many methods, e.g., optical flow and structure-from-motion. Due to the curved geometry of the state space SE3SE3{\text {SE}}_{3} and the nonlinear relation to the observed optical flow, many recent filtering approaches use a first-order approximation and assume a Gaussian a posteriori distribution or restrict the state to Euclidean geometry. The physical model is usually also limited to uniform motions. We propose a second-order optimal minimum energy filter that copes with the full geometry of SE3SE3{\text {SE}}_{3} as well as with the nonlinear dependencies between the state space and observations., which results in a recursive description of the optimal state and the corresponding second-order operator. The derived filter enables reconstructing motions correctly for synthetic and real scenes, e.g., from the KITTI benchmark. Our experiments confirm thatthe derived minimum energy filter with higher-order state differential equation copes with higher-order kinematics and is also able to minimize model noise. We also show that the proposed filter is superior to state-of-the-art extended Kalman filters on Lie groups in the case of linear observations and that our method reaches the accuracy of modern visual odometry methods.
DOI:doi:10.1007/s10851-016-0693-1
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Verlag: http://dx.doi.org/10.1007/s10851-016-0693-1
 Verlag: https://link.springer.com/article/10.1007/s10851-016-0693-1
 DOI: https://doi.org/10.1007/s10851-016-0693-1
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1572395400
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68247076   QR-Code
zum Seitenanfang