Status: Bibliographieeintrag
Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Berger, Johannes Peter [VerfasserIn]  |
| Lenzen, Frank [VerfasserIn]  |
| Becker, Florian [VerfasserIn]  |
| Neufeld, Andreas [VerfasserIn]  |
| Schnörr, Christoph [VerfasserIn]  |
Titel: | Second-order recursive filtering on the rigid-motion Lie group SE3 based on nonlinear observations |
Verf.angabe: | Johannes Berger, Frank Lenzen, Florian Becker, Andreas Neufeld, Christoph Schnörr |
Umfang: | 28 S. |
Fussnoten: | Gesehen am 26.04.2018 |
Titel Quelle: | Enthalten in: Journal of mathematical imaging and vision |
Jahr Quelle: | 2016 |
Band/Heft Quelle: | 58(2017), 1, S. 102-129 |
ISSN Quelle: | 1573-7683 |
Abstract: | Camera motion estimation from observed scene features is an important task in image processing to increase the accuracy of many methods, e.g., optical flow and structure-from-motion. Due to the curved geometry of the state space SE3SE3{\text {SE}}_{3} and the nonlinear relation to the observed optical flow, many recent filtering approaches use a first-order approximation and assume a Gaussian a posteriori distribution or restrict the state to Euclidean geometry. The physical model is usually also limited to uniform motions. We propose a second-order optimal minimum energy filter that copes with the full geometry of SE3SE3{\text {SE}}_{3} as well as with the nonlinear dependencies between the state space and observations., which results in a recursive description of the optimal state and the corresponding second-order operator. The derived filter enables reconstructing motions correctly for synthetic and real scenes, e.g., from the KITTI benchmark. Our experiments confirm thatthe derived minimum energy filter with higher-order state differential equation copes with higher-order kinematics and is also able to minimize model noise. We also show that the proposed filter is superior to state-of-the-art extended Kalman filters on Lie groups in the case of linear observations and that our method reaches the accuracy of modern visual odometry methods. |
DOI: | doi:10.1007/s10851-016-0693-1 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Verlag: http://dx.doi.org/10.1007/s10851-016-0693-1 |
| Verlag: https://link.springer.com/article/10.1007/s10851-016-0693-1 |
| DOI: https://doi.org/10.1007/s10851-016-0693-1 |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 1572395400 |
Verknüpfungen: | → Zeitschrift |
Second-order recursive filtering on the rigid-motion Lie group SE3 based on nonlinear observations / Berger, Johannes Peter [VerfasserIn] (Online-Ressource)
68247076