Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Alon, Ofir E. [VerfasserIn]   i
 Streltsov, Alexej Iwanowitsch [VerfasserIn]   i
 Sakmann, Kaspar [VerfasserIn]   i
 Lode, Axel Ulrich Jürgen [VerfasserIn]   i
 Grond, Julian [VerfasserIn]   i
 Cederbaum, Lorenz S. [VerfasserIn]   i
Titel:Recursive formulation of the multiconfigurational time-dependent Hartree method for fermions, bosons and mixtures thereof in terms of one-body density operators
Verf.angabe:Ofir E. Alon, Alexej I. Streltsov, Kaspar Sakmann, Axel U. J. Lode, Julian Grond, Lorenz S. Cederbaum
Jahr:2012
Jahr des Originals:2011
Umfang:13 S.
Teil:volume:401
 year:2012
 pages:2-14
 extent:13
Fussnoten:Published online: 8 October 2011 ; Gesehen am 03.05.2018
Titel Quelle:Enthalten in: Chemical physics
Ort Quelle:Amsterdam [u.a.] : Elsevier Science, 1973
Jahr Quelle:2012
Band/Heft Quelle:401(2012), Seite 2-14
Abstract:The multiconfigurational time-dependent Hartree method (MCTDH) [H.-D. Meyer, U. Manthe, L.S. Cederbaum, Chem. Phys. Lett. 165, 73 (1990); U. Manthe, H.-D. Meyer, L.S. Cederbaum, J. Chem. Phys. 97, 3199 (1992)] is celebrating nowadays entering its third decade of tackling numerically-exactly a broad range of correlated multi-dimensional non-equilibrium quantum dynamical systems. Taking in recent years particles’ statistics explicitly into account, within the MCTDH for fermions (MCTDHF) and for bosons (MCTDHB), has opened up further opportunities to treat larger systems of interacting identical particles, primarily in laser-atom and cold-atom physics. With the increase of experimental capabilities to simultaneously trap mixtures of two, three, and possibly even multiple kinds of interacting composite identical particles together, we set up the stage in the present work and specify the MCTDH method for such cases. Explicitly, the MCTDH method for systems with three kinds of identical particles interacting via all combinations of two- and three-body forces is presented, and the resulting equations-of-motion are briefly discussed. All four possible mixtures (Fermi-Fermi-Fermi, Bose-Fermi-Fermi, Bose-Bose-Fermi and Bose-Bose-Bose) are presented in a unified manner. Particular attention is paid to represent the coefficients’ part of the equations-of-motion in a compact recursive form in terms of one-body density operators only. The recursion utilizes the recently proposed Combinadic-based mapping for fermionic and bosonic operators in Fock space [A.I. Streltsov, O.E. Alon, L.S. Cederbaum, Phys. Rev. A 81, 022124 (2010)], successfully applied and implemented within MCTDHB. Our work sheds new light on the representation of the coefficients’ part in MCTDHF and MCTDHB without resorting to the matrix elements of the many-body Hamiltonian with respect to the time-dependent configurations. It suggests a recipe for efficient implementation of the schemes derived here for mixtures which is suitable for parallelization.
DOI:doi:10.1016/j.chemphys.2011.09.026
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: http://dx.doi.org/10.1016/j.chemphys.2011.09.026
 Volltext: http://www.sciencedirect.com/science/article/pii/S0301010411004198
 DOI: https://doi.org/10.1016/j.chemphys.2011.09.026
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Dirac-Frenkel variational principle
 Fock-space mapping of bosonic and fermionic operators
 MCTDH for Bose-Bose-Bose mixtures (MCTDH-BBB)
 MCTDH for Bose-Bose-Fermi mixtures (MCTDH-BBF)
 MCTDH for Bose-Fermi-Fermi mixtures (MCTDH-BFF)
 MCTDH for bosons (MCTDHB)
 MCTDH for Fermi-Fermi-Fermi mixtures (MCTDH-FFF)
 MCTDH for fermions (MCTDHF)
 Multiconfigurational time-dependent Hartree (MCTDH)
 Reduced density matrices
 Time-dependent many-particle Schrödinger equation
K10plus-PPN:1572584556
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68248899   QR-Code
zum Seitenanfang