Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Friedmann, Simon [VerfasserIn]   i
 Schemmel, Johannes [VerfasserIn]   i
 Grübl, Andreas [VerfasserIn]   i
 Hartel, Andreas [VerfasserIn]   i
 Hock, Matthias [VerfasserIn]   i
 Meier, Karlheinz [VerfasserIn]   i
Titel:Demonstrating hybrid learning in a flexible neuromorphic hardware system
Verf.angabe:Simon Friedmann, Johannes Schemmel, Member, IEEE, Andreas Grübl, Andreas Hartel, Matthias Hock, and Karlheinz Meier
Umfang:15 S.
Fussnoten:Gesehen am 08.05.2018
Titel Quelle:Enthalten in: Institute of Electrical and Electronics Engineers: IEEE transactions on biomedical circuits and systems
Jahr Quelle:2017
Band/Heft Quelle:11(2017), 1, S. 128-142
ISSN Quelle:1940-9990
Abstract:We present results from a new approach to learning and plasticity in neuromorphic hardware systems: to enable flexibility in implementable learning mechanisms while keeping high efficiency associated with neuromorphic implementations, we combine a general-purpose processor with full-custom analog elements. This processor is operating in parallel with a fully parallel neuromorphic system consisting of an array of synapses connected to analog, continuous time neuron circuits. Novel analog correlation sensor circuits process spike events for each synapse in parallel and in real-time. The processor uses this pre-processing to compute new weights possibly using additional information following its program. Therefore, to a certain extent, learning rules can be defined in software giving a large degree of flexibility. Synapses realize correlation detection geared towards Spike-Timing Dependent Plasticity (STDP) as central computational primitive in the analog domain. Operating at a speed-up factor of 1000 compared to biological time-scale, we measure time-constants from tens to hundreds of micro-seconds. We analyze variability across multiple chips and demonstrate learning using a multiplicative STDP rule. We conclude that the presented approach will enable flexible and efficient learning as a platform for neuroscientific research and technological applications.
DOI:doi:10.1109/TBCAS.2016.2579164
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Kostenfrei: Verlag: https://dx.doi.org/10.1109/TBCAS.2016.2579164
 Kostenfrei: Verlag: https://ieeexplore.ieee.org/document/7563782/authors
 DOI: https://doi.org/10.1109/TBCAS.2016.2579164
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1574274139
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68250393   QR-Code
zum Seitenanfang