Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Pläschke, Rachel [VerfasserIn]   i
 Gruber, Oliver [VerfasserIn]   i
Titel:On the integrity of functional brain networks in schizophrenia, Parkinson's disease, and advanced age
Titelzusatz:Evidence from connectivity-based single-subject classification
Verf.angabe:Rachel N. Pläschke, Edna C. Cieslik, Veronika I. Müller, Felix Hoffstaedter, Anna Plachti, Deepthi P. Varikuti, Mareike Goosses, Anne Latz, Svenja Caspers, Christiane Jockwitz, Susanne Moebus, Oliver Gruber, Claudia R. Eickhoff, Kathrin Reetz, Julia Heller, Martin Südmeyer, Christian Mathys, Julian Caspers, Christian Grefkes, Tobias Kalenscher, Robert Langner, Simon B. Eickhoff
Umfang:14 S.
Fussnoten:Gesehen am 05.06.2018
Titel Quelle:Enthalten in: Human brain mapping
Jahr Quelle:2017
Band/Heft Quelle:38(2017), 12, S. 5845-5858
ISSN Quelle:1097-0193
Abstract:Previous whole-brain functional connectivity studies achieved successful classifications of patients and healthy controls but only offered limited specificity as to affected brain systems. Here, we examined whether the connectivity patterns of functional systems affected in schizophrenia (SCZ), Parkinson's disease (PD), or normal aging equally translate into high classification accuracies for these conditions. We compared classification performance between pre-defined networks for each group and, for any given network, between groups. Separate support vector machine classifications of 86 SCZ patients, 80 PD patients, and 95 older adults relative to their matched healthy/young controls, respectively, were performed on functional connectivity in 12 task-based, meta-analytically defined networks using 25 replications of a nested 10-fold cross-validation scheme. Classification performance of the various networks clearly differed between conditions, as those networks that best classified one disease were usually non-informative for the other. For SCZ, but not PD, emotion-processing, empathy, and cognitive action control networks distinguished patients most accurately from controls. For PD, but not SCZ, networks subserving autobiographical or semantic memory, motor execution, and theory-of-mind cognition yielded the best classifications. In contrast, young-old classification was excellent based on all networks and outperformed both clinical classifications. Our pattern-classification approach captured associations between clinical and developmental conditions and functional network integrity with a higher level of specificity than did previous whole-brain analyses. Taken together, our results support resting-state connectivity as a marker of functional dysregulation in specific networks known to be affected by SCZ and PD, while suggesting that aging affects network integrity in a more global way. Hum Brain Mapp 38:5845-5858, 2017. © 2017 Wiley Periodicals, Inc.
DOI:doi:10.1002/hbm.23763
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Verlag: http://dx.doi.org/10.1002/hbm.23763
 Verlag: https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.23763
 DOI: https://doi.org/10.1002/hbm.23763
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1575979713
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68257704   QR-Code
zum Seitenanfang