Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Schweigler, Thomas [VerfasserIn]   i
 Kasper, Valentin [VerfasserIn]   i
 Erne, Sebastian [VerfasserIn]   i
 Gasenzer, Thomas [VerfasserIn]   i
 Berges, Jürgen [VerfasserIn]   i
Titel:Experimental characterization of a quantum many-body system via higher-order correlations
Verf.angabe:Thomas Schweigler, Valentin Kasper, Sebastian Erne, Igor Mazets, Bernhard Rauer, Federica Cataldini, Tim Langen, Thomas Gasenzer, Jürgen Berges andJörg Schmiedmayer
Umfang:4 S.
Fussnoten:Gesehen am 08.06.2018
Titel Quelle:Enthalten in: Nature <London>
Jahr Quelle:2017
Band/Heft Quelle:545(2017), 7654, S. 323-326
ISSN Quelle:1476-4687
Abstract:Quantum systems can be characterized by their correlations1,2. Higher-order (larger than second order) correlations, and the ways in which they can be decomposed into correlations of lower order, provide important information about the system, its structure, its interactions and its complexity3,4. The measurement of such correlation functions is therefore an essential tool for reading, verifying and characterizing quantum simulations5. Although higher-order correlation functions are frequently used in theoretical calculations, so far mainly correlations up to second order have been studied experimentally. Here we study a pair of tunnel-coupled one-dimensional atomic superfluids and characterize the corresponding quantum many-body problem by measuring correlation functions. We extract phase correlation functions up to tenth order from interference patterns and analyse whether, and under what conditions, these functions factorize into correlations of lower order. This analysis characterizes the essential features of our system, the relevant quasiparticles, their interactions and topologically distinct vacua. From our data we conclude that in thermal equilibrium our system can be seen as a quantum simulator of the sine-Gordon model6,7,8,9,10, relevant for diverse disciplines ranging from particle physics to condensed matter11,12. The measurement and evaluation of higher-order correlation functions can easily be generalized to other systems and to study correlations of any other observable such as density, spin and magnetization. It therefore represents a general method for analysing quantum many-body systems from experimental data.
DOI:doi:10.1038/nature22310
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Verlag: http://dx.doi.org/10.1038/nature22310
 Verlag: https://www.nature.com/articles/nature22310
 DOI: https://doi.org/10.1038/nature22310
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1576198901
Verknüpfungen:→ Zeitung

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68259160   QR-Code
zum Seitenanfang