Status: Bibliographieeintrag
Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Katzfuß, Matthias [VerfasserIn]  |
| Cressie, Noel A. C. [VerfasserIn]  |
Titel: | Bayesian hierarchical spatio-temporal smoothing for very large datasets |
Verf.angabe: | Matthias Katzfuss and Noel Cressie |
Umfang: | 14 S. |
Fussnoten: | Gesehen am 04.07.2018 |
Titel Quelle: | Enthalten in: Environmetrics |
Jahr Quelle: | 2012 |
Band/Heft Quelle: | 23(2012), 1, S. 94-107 |
ISSN Quelle: | 1099-095X |
Abstract: | Spatio-temporal statistics is prone to the curse of dimensionality: one manifestation of this is inversion of the data-covariance matrix, which is not in general feasible for very-large-to-massive datasets, such as those observed by satellite instruments. This becomes even more of a problem in fully Bayesian statistical models, where the inversion typically has to be carried out many times in Markov chain Monte Carlo samplers. Here, we propose a Bayesian hierarchical spatio-temporal random effects (STRE) model that offers fast computation: Dimension reduction is achieved by projecting the process onto a basis-function space of low, fixed dimension, and the temporal evolution is modeled using a dynamical autoregressive model in time. We develop a multiresolutional prior for the propagator matrix that allows for unknown (random) sparsity and shrinkage, and we describe how sampling from the posterior distribution can be achieved in a feasible way, even if this matrix is very large. Finally, we compare inference based on our fully Bayesian STRE model with that based on an empirical-Bayesian STRE-model approach, where parameters are estimated via an expectation-maximization algorithm. The comparison is carried out in a simulation study and on a real-world dataset of global satellite CO2 measurements. Copyright © 2011 John Wiley & Sons, Ltd. |
DOI: | doi:10.1002/env.1147 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Verlag: http://dx.doi.org/10.1002/env.1147 |
| Verlag: https://onlinelibrary.wiley.com/doi/abs/10.1002/env.1147 |
| DOI: https://doi.org/10.1002/env.1147 |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 157726925X |
Verknüpfungen: | → Zeitschrift |
Bayesian hierarchical spatio-temporal smoothing for very large datasets / Katzfuß, Matthias [VerfasserIn] (Online-Ressource)
68280817