Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Katzfuß, Matthias [VerfasserIn]   i
 Cressie, Noel A. C. [VerfasserIn]   i
Titel:Bayesian hierarchical spatio-temporal smoothing for very large datasets
Verf.angabe:Matthias Katzfuss and Noel Cressie
Umfang:14 S.
Fussnoten:Gesehen am 04.07.2018
Titel Quelle:Enthalten in: Environmetrics
Jahr Quelle:2012
Band/Heft Quelle:23(2012), 1, S. 94-107
ISSN Quelle:1099-095X
Abstract:Spatio-temporal statistics is prone to the curse of dimensionality: one manifestation of this is inversion of the data-covariance matrix, which is not in general feasible for very-large-to-massive datasets, such as those observed by satellite instruments. This becomes even more of a problem in fully Bayesian statistical models, where the inversion typically has to be carried out many times in Markov chain Monte Carlo samplers. Here, we propose a Bayesian hierarchical spatio-temporal random effects (STRE) model that offers fast computation: Dimension reduction is achieved by projecting the process onto a basis-function space of low, fixed dimension, and the temporal evolution is modeled using a dynamical autoregressive model in time. We develop a multiresolutional prior for the propagator matrix that allows for unknown (random) sparsity and shrinkage, and we describe how sampling from the posterior distribution can be achieved in a feasible way, even if this matrix is very large. Finally, we compare inference based on our fully Bayesian STRE model with that based on an empirical-Bayesian STRE-model approach, where parameters are estimated via an expectation-maximization algorithm. The comparison is carried out in a simulation study and on a real-world dataset of global satellite CO2 measurements. Copyright © 2011 John Wiley & Sons, Ltd.
DOI:doi:10.1002/env.1147
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Verlag: http://dx.doi.org/10.1002/env.1147
 Verlag: https://onlinelibrary.wiley.com/doi/abs/10.1002/env.1147
 DOI: https://doi.org/10.1002/env.1147
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:157726925X
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68280817   QR-Code
zum Seitenanfang