Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Dalmasso, Giovanni [VerfasserIn]   i
 Marin Zapata, Paula Andrea [VerfasserIn]   i
 Brady, Nathan [VerfasserIn]   i
 Hamacher-Brady, Anne [VerfasserIn]   i
Titel:Agent-based modeling of mitochondria links sub-cellular dynamics to cellular homeostasis and heterogeneity
Verf.angabe:Giovanni Dalmasso, Paula Andrea Marin Zapata, Nathan Ryan Brady, Anne Hamacher-Brady
Fussnoten:Gesehen am 11.07.2018
Titel Quelle:Enthalten in: PLOS ONE
Jahr Quelle:2017
Band/Heft Quelle:12(2017,1) Artikel-Nummer e0168198, 33 Seiten
ISSN Quelle:1932-6203
Abstract:Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying, cell-to-cell variability of mitochondrial morphology and energetic stress states. Overall, our modeling approach integrates biochemical and imaging knowledge, and presents a novel open-modeling approach to investigate how spatial and temporal mitochondrial dynamics contribute to functional homeostasis, and how subcellular organelle heterogeneity contributes to the emergence of cell heterogeneity.
DOI:doi:10.1371/journal.pone.0168198
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Kostenfrei: Verlag: http://dx.doi.org/10.1371/journal.pone.0168198
 Verlag: https://doi.org/10.1371/journal.pone.0168198
 DOI: https://doi.org/10.1371/journal.pone.0168198
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1577501500
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68284495   QR-Code
zum Seitenanfang