Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Winter, Christof Alexander [VerfasserIn]   i
 Niedergethmann, Marco [VerfasserIn]   i
 Büchler, Markus W. [VerfasserIn]   i
Titel:Google goes cancer
Titelzusatz:improving outcome prediction for cancer patients by network-based ranking of marker genes
Verf.angabe:Christof Winter, Glen Kristiansen, Stephan Kersting, Janine Roy, Daniela Aust, Thomas Knösel, Petra Rümmele, Beatrix Jahnke, Vera Hentrich, Felix Rückert, Marco Niedergethmann, Wilko Weichert, Marcus Bahra, Hans J. Schlitt, Utz Settmacher, Helmut Friess, Markus Büchler, Hans-Detlev Saeger, Michael Schroeder, Christian Pilarsky, Robert Grützmann
E-Jahr:2012
Jahr:May 17, 2012
Umfang:16 S.
Fussnoten:Gesehen am 16.07.2018
Titel Quelle:Enthalten in: Public Library of SciencePLoS Computational Biology
Ort Quelle:San Francisco, Calif. : Public Library of Science, 2005
Jahr Quelle:2012
Band/Heft Quelle:8(2012,5) Artikel-Numer 102511, 16 Seiten
ISSN Quelle:1553-7358
Abstract:Predicting the clinical outcome of cancer patients based on the expression of marker genes in their tumors has received increasing interest in the past decade. Accurate predictors of outcome and response to therapy could be used to personalize and thereby improve therapy. However, state of the art methods used so far often found marker genes with limited prediction accuracy, limited reproducibility, and unclear biological relevance. To address this problem, we developed a novel computational approach to identify genes prognostic for outcome that couples gene expression measurements from primary tumor samples with a network of known relationships between the genes. Our approach ranks genes according to their prognostic relevance using both expression and network information in a manner similar to Google's PageRank. We applied this method to gene expression profiles which we obtained from 30 patients with pancreatic cancer, and identified seven candidate marker genes prognostic for outcome. Compared to genes found with state of the art methods, such as Pearson correlation of gene expression with survival time, we improve the prediction accuracy by up to 7%. Accuracies were assessed using support vector machine classifiers and Monte Carlo cross-validation. We then validated the prognostic value of our seven candidate markers using immunohistochemistry on an independent set of 412 pancreatic cancer samples. Notably, signatures derived from our candidate markers were independently predictive of outcome and superior to established clinical prognostic factors such as grade, tumor size, and nodal status. As the amount of genomic data of individual tumors grows rapidly, our algorithm meets the need for powerful computational approaches that are key to exploit these data for personalized cancer therapies in clinical practice.
DOI:doi:10.1371/journal.pcbi.1002511
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: http://dx.doi.org/10.1371/journal.pcbi.1002511
 kostenfrei: Volltext: http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002511
 DOI: https://doi.org/10.1371/journal.pcbi.1002511
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Algorithms
 Gene expression
 Genetic networks
 Immunologic adjuvants
 Microarrays
 Pancreatic cancer
 Prognosis
 Protein interaction networks
K10plus-PPN:1577627725
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68285992   QR-Code
zum Seitenanfang