Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Domsch, Sebastian [VerfasserIn]   i
 Mürle, Bettina [VerfasserIn]   i
 Weingärtner, Sebastian [VerfasserIn]   i
 Zapp, Jascha [VerfasserIn]   i
 Wenz, Frederik [VerfasserIn]   i
 Schad, Lothar R. [VerfasserIn]   i
Titel:Oxygen extraction fraction mapping at 3 Tesla using an artificial neural network
Titelzusatz:a feasibility study
Verf.angabe:Sebastian Domsch, Bettina Mürle, Sebastian Weingärtner, Jascha Zapp, Frederik Wenz, and Lothar R. Schad
Jahr:2018
Jahr des Originals:2017
Umfang:10 S.
Fussnoten:First published: 14 May 2017 ; Gesehen am 18.07.2018
Titel Quelle:Enthalten in: Magnetic resonance in medicine
Ort Quelle:New York, NY [u.a.] : Wiley-Liss, 1984
Jahr Quelle:2018
Band/Heft Quelle:79(2018), 2, Seite 890-899
ISSN Quelle:1522-2594
Abstract:Purpose The oxygen extraction fraction (OEF) is an important biomarker for tissue-viability. MRI enables noninvasive estimation of the OEF based on the blood-oxygenation-level-dependent (BOLD) effect. Quantitative OEF-mapping is commonly applied using least-squares regression (LSR) to an analytical tissue model. However, the LSR method has not yet become clinically established due to the necessity for long acquisition times. Artificial neural networks (ANNs) recently have received increasing interest for robust curve-fitting and might pose an alternative to the conventional LSR method for reduced acquisition times. This study presents in vivo OEF mapping results using the conventional LSR and the proposed ANN method. Methods In vivo data of five healthy volunteers and one patient with a primary brain tumor were acquired at 3T using a gradient-echo sampled spin-echo (GESSE) sequence. The ANN was trained with simulated BOLD data. Results In healthy subjects, the mean OEF was 36 ± 2% (LSR) and 40 ± 1% (ANN). The OEF variance within subjects was reduced from 8% to 6% using the ANN method. In the patient, both methods revealed a distinct OEF hotspot in the tumor area, whereas ANN showed less apparent artifacts in surrounding tissue. Conclusion In clinical scan times, the ANN analysis enables OEF mapping with reduced variance, which could facilitate its integration into clinical protocols. Magn Reson Med 79:890-899, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
DOI:doi:10.1002/mrm.26749
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: http://dx.doi.org/10.1002/mrm.26749
 Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.26749
 DOI: https://doi.org/10.1002/mrm.26749
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:analytical tissue model
 artificial neural network
 blood-oxygenation-level-dependent (BOLD)
 GESSEk
 least-squares regression
 machine learning
 oxygen extraction fraction
K10plus-PPN:1577729188
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68286558   QR-Code
zum Seitenanfang