Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Hanselmann, Michael [VerfasserIn]   i
 Röder, Jens [VerfasserIn]   i
 Köthe, Ullrich [VerfasserIn]   i
 Hamprecht, Fred [VerfasserIn]   i
Titel:Active learning for convenient annotation and classification of secondary ion mass spectrometry images
Verf.angabe:Michael Hanselmann, Jens Röder, Ullrich Köthe, Bernhard Y. Renard, Ron M.A. Heeren, and Fred A. Hamprecht
Jahr:2013
Umfang:9 S.
Fussnoten:Publication date: November 16, 2012 ; Gesehen am 24.07.2018
Titel Quelle:Enthalten in: Analytical chemistry
Ort Quelle:Columbus, Ohio : American Chemical Society, 1947
Jahr Quelle:2013
Band/Heft Quelle:85(2013), 1, Seite 147-155
ISSN Quelle:1520-6882
Abstract:Digital staining for the automated annotation of mass spectrometry imaging (MSI) data has previously been achieved using state-of-the-art classifiers such as random forests or support vector machines (SVMs). However, the training of such classifiers requires an expert to label exemplary data in advance. This process is time-consuming and hence costly, especially if the tissue is heterogeneous. In theory, it may be sufficient to only label a few highly representative pixels of an MS image, but it is not known a priori which pixels to select. This motivates active learning strategies in which the algorithm itself queries the expert by automatically suggesting promising candidate pixels of an MS image for labeling. Given a suitable querying strategy, the number of required training labels can be significantly reduced while maintaining classification accuracy. In this work, we propose active learning for convenient annotation of MSI data. We generalize a recently proposed active learning method to the multiclass case and combine it with the random forest classifier. Its superior performance over random sampling is demonstrated on secondary ion mass spectrometry data, making it an interesting approach for the classification of MS images.
DOI:doi:10.1021/ac3023313
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: http://dx.doi.org/10.1021/ac3023313
 Volltext: http://pubs.acs.org/doi/10.1021/ac3023313
 DOI: https://doi.org/10.1021/ac3023313
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1577905865
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68288267   QR-Code
zum Seitenanfang