Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Zhou, Chao [VerfasserIn]   i
 Duan, Xiaoyang [VerfasserIn]   i
 Liu, Na [VerfasserIn]   i
Titel:DNA-nanotechnology-enabled chiral plasmonics
Titelzusatz:from static to dynamic
Verf.angabe:Chao Zhou, Xiaoyang Duan, and Na Liu
E-Jahr:2017
Jahr:27 September 2017
Umfang:9 S.
Fussnoten:Published online 27 September 2017 ; Gesehen am 09.08.2018
Titel Quelle:Enthalten in: Accounts of chemical research
Ort Quelle:Columbus, Ohio : American Chemical Soc., 1968
Jahr Quelle:2017
Band/Heft Quelle:50(2017), 12, Seite 2906-2914
ISSN Quelle:1520-4898
Abstract:The development of DNA nanotechnology, especially the advent of DNA origami, has made DNA ideally suited to construct nanostructures with unprecedented complexity and arbitrariness. As a fully addressable platform, DNA origami can be used to organize discrete entities in space through DNA hybridization with nanometer accuracy. Among a variety of functionalized particles, metal nanoparticles such as gold nanoparticles (AuNPs) feature an important pathway to endow DNA origami -assembled nanostructures with tailored optical functionalities. When metal particles are placed in dose proximity, their particle plasmons, collective oscillations of conduction electrons, can be coupled together, giving rise to a wealth of interesting optical phenomena. Nevertheless, characterization methods that can read out the optical responses from plasmonic nanostructures composed of small metal particles, and especially can optically distinguish in situ their minute conformation changes, are very few. Circular dichroism (CD) spectroscopy has proven to be a successful means to overcome these challenges because of its high sensitivity in discrimination of three-dimensional conformation changes. In this Account, we discuss a variety of static and dynamic chiral plasmonic nanostructures enabled by DNA nanotechnology. In the category of static plasmonic systems, we first show chiral plasmonic nanostructures based on spherical AuNPs, including plasmonic helices, toroids, and tetramers. To enhance the CD responses, anisotropic gold nanorods with larger extinction coefficients are utilized to create chiral plasmonic crosses and helical superstructures. Next, we highlight the inevitable evolution from static to dynamic plasmonic systems along with the fast development of this interdisciplinary field. Several dynamic plasmonic systems are reviewed according to their working mechanisms. We first elucidate a reconfigurable plasmonic cross structure that can execute DNA-regulated conformational changes on the nanoscale. Hosted by a reconfigurable DNA origami template, the plasmonic cross can be switched between a chiral locked state and an achiral relaxed state through toehold mediated strand displacement reactions. This reconfigurable nanostructure can also be modified in response to light stimuli, leading to a noninvasive, waste-free, and all-optically controlled system. Taking one step further, we show that selective manipulations of individual structural species coexisting in one ensemble can be achieved using pH tuning of reconfigurable plasmonic nanostructures in a programmable manner. Finally, we describe an alternative to achieving dynamic plasmonic systems by driving AuNPs directly on origami. Such plasmonic walkers, inspired by the biological molecular motors in living cells, can generate dynamic CD responses when carrying out directional, progressive, and reverse nanoscale walking on DNA origami. We envision that the combination of DNA nanotechnology and plasmonics will open an avenue toward a new generation of functional plasmonic systems with tailored optical properties and useful applications, including polarization conversion devices, biomolecular sensing, surface-enhanced Raman and fluorescence spectroscopy, and diffraction-limited optics.
DOI:doi:10.1021/acs.accounts.7b00389
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1021/acs.accounts.7b00389
 DOI: https://doi.org/10.1021/acs.accounts.7b00389
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:au nanorod
 circular-dichroism
 folding dna
 gold
 metal nanoparticle assemblies
 nanorod dimers
 nanoscale shapes
 nanostructures
 natural optical-activity
 origami
K10plus-PPN:1578412676
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68293927   QR-Code
zum Seitenanfang