Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Petersen, Jens [VerfasserIn]   i
 Bendszus, Martin [VerfasserIn]   i
 Debus, Jürgen [VerfasserIn]   i
 Heiland, Sabine [VerfasserIn]   i
 Maier-Hein, Klaus H. [VerfasserIn]   i
Titel:Effective user interaction in online interactive semantic segmentation of glioblastoma magnetic resonance imaging
Verf.angabe:Jens Petersen, Martin Bendszus, Jürgen Debus, Sabine Heiland, Klaus H. Maier-Hein
E-Jahr:2017
Jahr:22 August 2017
Fussnoten:Gesehen am 09.08.2018
Titel Quelle:Enthalten in: Journal of medical imaging
Ort Quelle:[Bellingham, Wash.] : SPIE, 2014
Jahr Quelle:2017
Band/Heft Quelle:4(2017,3) Artikel-Nummer 034001, ? Seiten
ISSN Quelle:2329-4310
Abstract:Interactive segmentation is a promising approach to solving the pervasive shortage of reference annotations for automated medical image processing. We focus on the challenging task of glioblastoma segmentation in magnetic resonance imaging using a random forest pixel classifier trained iteratively on scribble annotations. Our experiments use data from the MICCAI Multimodal Brain Tumor Segmentation Challenge 2013 and simulate expert interactions using different approaches: corrective annotations, class-balanced corrections, annotations where classifier uncertainty is high, and corrections where classifier uncertainty is high/low. We find that it is better to correct the classifier than to provide annotations where the classifier is uncertain, resulting in significantly better Dice scores in the edema (0.662 to 0.686) and necrosis (0.550 to 0.676) regions after 20 interactions. It is also advantageous to balance inputs among classes, with significantly better Dice in the necrotic (0.501 to 0.676) and nonenhancing (0.151 to 0.235) regions compared to fully random corrections. Corrective annotations in regions of high classifier uncertainty provide no additional benefit, low uncertainty corrections perform worst. Preliminary experiments with real users indicate that those with intermediate proficiency make a considerable number of annotation errors. The performance of corrective approaches suffers most strongly from this, leading to a less profound difference to uncertainty-based annotations.
DOI:doi:10.1117/1.JMI.4.3.034001
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: http://dx.doi.org/10.1117/1.JMI.4.3.034001
 Volltext: https://www.spiedigitallibrary.org/journals/Journal-of-Medical-Imaging/volume-4/issue-3/034001/Effective-user-interactio ...
 DOI: https://doi.org/10.1117/1.JMI.4.3.034001
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1578412706
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68293928   QR-Code
zum Seitenanfang