Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Mombaur, Katja [VerfasserIn]   i
 Giesl, Peter [VerfasserIn]   i
 Wagner, Heiko [VerfasserIn]   i
Titel:Stability optimization of juggling
Verf.angabe:Katja Mombaur, Peter Giesl, and Heiko Wagner
Umfang:14 S.
Fussnoten:Gesehen am 17.08.2018
Titel Quelle:Enthalten in: Modeling, simulation and optimization of complex processes
Jahr Quelle:2008
Band/Heft Quelle:(2008), S. 419-432
ISBN Quelle:978-3-540-79409-7
Abstract:Biological systems like humans or animals have remarkable stability properties allowing them to perform fast motions which are unparalleled by corresponding robot configurations. The stability of a system can be improved if all characteristic parameters, like masses, geometric properties, springs, dampers etc. as well as torques and forces driving the motion are carefully adjusted and selected exploiting the inherent dynamic properties of the mechanical system. Biological systems exhibit another possible source of self-stability which are the intrinsic mechanical properties in the muscles leading to the generation of muscle forces. These effects can be included in a mathematical model of the full system taking into account the dependencies of the muscle force on muscle length, contraction speed and activation level. As an example for a biological motion powered by muscles, we present periodic single-arm self-stabilizing juggling motions involving three muscles that have been produced by numerical optimization. The stability of a periodic motion can be measured in terms of the spectral radius of the monodromy matrix. We optimize this stability criterion using special purpose optimization methods and leaving all model parameters, control variables, trajectory start values and cycle time free to be determined by the optimization. As a result we found a self-stable solution of the juggling problem.
DOI:doi:10.1007/978-3-540-79409-7_29
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Resolving-System: http://dx.doi.org/10.1007/978-3-540-79409-7_29
 Verlag: https://link.springer.com/chapter/10.1007/978-3-540-79409-7_29
 DOI: https://doi.org/10.1007/978-3-540-79409-7_29
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1580162657
Verknüpfungen:→ Sammelwerk

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68296558   QR-Code
zum Seitenanfang