Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Haß, Joachim [VerfasserIn]   i
 Herrmann, J. Michael [VerfasserIn]   i
Titel:The neural representation of time
Titelzusatz:an information-theoretic perspective
Verf.angabe:Joachim Hass, J. Michael Herrmann
E-Jahr:2012
Jahr:April 25, 2012
Umfang:34 S.
Fussnoten:Gesehen am 10.09.2018
Titel Quelle:Enthalten in: Neural computation
Ort Quelle:Cambridge, Mass. : MIT Press, 1989
Jahr Quelle:2012
Band/Heft Quelle:24(2012), 6, Seite 1519-1552
ISSN Quelle:1530-888X
Abstract:A prominent finding in psychophysical experiments on time perception is Weber's law, the linear scaling of timing errors with duration. The ability to reproduce this scaling has been taken as a criterion for the validity of neurocomputational models of time perception. However, the origin of Weber's law remains unknown, and currently only a few models generi- cally reproduce it. Here, we use an information-theoretical framework that considers the neuronal mechanisms of time perception as stochastic processes to investigate the statistical origin of Weber's law in time perception and also its frequently observed deviations. Under the assumption that the brain is able to compute optimal estimates of time, we find that Weber's law only holds exactly if the estimate is based on temporal changes in the variance of the process. In contrast, the timing errors scale sublinearly with time if the systematic changes in the mean of a process are used for estimation, as is the case in the majority of time perception models, while estimates based on temporal correlations result in a superlinear scaling. This hierarchy of temporal information is preserved if several sources of temporal information are available. Furthermore, we consider the case of multiple stochastic processes and study the examples of a covariance-based model and a model based on synfire chains. This approach reveals that existing neurocomputational models of time perception can be classified as mean-, variance- and correlation-based processes and allows predictions about the scaling of the resulting timing errors.
DOI:doi:10.1162/NECO_a_00280
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: http://dx.doi.org/10.1162/NECO_a_00280
 Volltext: https://www.mitpressjournals.org/doi/10.1162/NECO_a_00280
 DOI: https://doi.org/10.1162/NECO_a_00280
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1580826555
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68303444   QR-Code
zum Seitenanfang