Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Huang, Zhiqin [VerfasserIn]   i
 Jones, David T. W. [VerfasserIn]   i
 Lichter, Peter [VerfasserIn]   i
 Zapatka, Marc [VerfasserIn]   i
Titel:confFuse
Titelzusatz:high-confidence fusion gene detection across tumor entities
Verf.angabe:Zhiqin Huang, David T.W. Jones, Yonghe Wu, Peter Lichter and Marc Zapatka
E-Jahr:2017
Jahr:29 September 2017
Umfang:10 S.
Fussnoten:Gesehen am 13.09.2018
Titel Quelle:Enthalten in: Frontiers in genetics
Ort Quelle:Lausanne : Frontiers Media, 2010
Jahr Quelle:2017
Band/Heft Quelle:8(2017) Artikel-Nummer 137, 10 Seiten
ISSN Quelle:1664-8021
Abstract:Background: Fusion genes play an important role in the tumorigenesis of many cancers. Next-generation sequencing (NGS) technologies have been successfully applied in fusion gene detection for the last several years, and a number of NGS-based tools have been developed for identifying fusion genes during this period. Most fusion gene detection tools based on RNA-seq data report a large number of candidates (mostly false positives), making it hard to prioritize candidates for experimental validation and further analysis. Selection of reliable fusion genes for downstream analysis becomes very important in cancer research. We therefore developed confFuse, a scoring algorithm to reliably select high-confidence fusion genes which are likely to be biologically relevant. Results: ConfFuse takes multiple parameters into account in order to assign each fusion candidate a confidence score, of which score ≥8 indicates high-confidence fusion gene predictions. These parameters were manually curated based on our experience and on certain structural motifs of fusion genes. Compared with alternative tools, based on 96 published RNA-seq samples from different tumor entities, our method can significantly reduce the number of fusion candidates (301 high-confidence from 8,083 total predicted fusion genes) and keep high detection accuracy (recovery rate 85.7%). Validation of 18 novel, high-confidence fusions detected in three breast tumor samples resulted in a 100% validation rate. Conclusions: ConfFuse is a novel downstream filtering method that allows selection of highly reliable fusion gene candidates for further downstream analysis and experimental validations. confFuse is available at https://github.com/Zhiqin-HUANG/confFuse.
DOI:doi:10.3389/fgene.2017.00137
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Kostenfrei: Volltext ; Verlag: http://dx.doi.org/10.3389/fgene.2017.00137
 Kostenfrei: Volltext: https://www.frontiersin.org/articles/10.3389/fgene.2017.00137/full
 DOI: https://doi.org/10.3389/fgene.2017.00137
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:bioinformatics
 biomarkers
 fusion gene
 Next-generation sequencing
 RNA-Seq
K10plus-PPN:1580936083
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68304732   QR-Code
zum Seitenanfang