Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Maier-Hein, Lena [VerfasserIn]   i
 Franz, Alfred Michael [VerfasserIn]   i
 Schmidt, Mirko [VerfasserIn]   i
 Meinzer, Hans-Peter [VerfasserIn]   i
Titel:Convergent iterative closest-point algorithm to accomodate anisotropic and inhomogenous localization error
Verf.angabe:L. Maier-Hein, A. M. Franz, T. R. dos Santos, M. Schmidt, M. Fangerau, H. Meinzer, and J. M. Fitzpatrick
Jahr:2012
Umfang:13 S.
Fussnoten:Date of publication: 20 December 2011 ; Gesehen am 11.10.2018
Titel Quelle:Enthalten in: Institute of Electrical and Electronics EngineersIEEE transactions on pattern analysis and machine intelligence
Ort Quelle:New York, NY : IEEE, 1979
Jahr Quelle:2012
Band/Heft Quelle:34(2012), 8, Seite 1520-1532
ISSN Quelle:1939-3539
Abstract:Since its introduction in the early 1990s, the Iterative Closest Point (ICP) algorithm has become one of the most well-known methods for geometric alignment of 3D models. Given two roughly aligned shapes represented by two point sets, the algorithm iteratively establishes point correspondences given the current alignment of the data and computes a rigid transformation accordingly. From a statistical point of view, however, it implicitly assumes that the points are observed with isotropic Gaussian noise. In this paper, we show that this assumption may lead to errors and generalize the ICP such that it can account for anisotropic and inhomogenous localization errors. We 1) provide a formal description of the algorithm, 2) extend it to registration of partially overlapping surfaces, 3) prove its convergence, 4) derive the required covariance matrices for a set of selected applications, and 5) present means for optimizing the runtime. An evaluation on publicly available surface meshes as well as on a set of meshes extracted from medical imaging data shows a dramatic increase in accuracy compared to the original ICP, especially in the case of partial surface registration. As point-based surface registration is a central component in various applications, the potential impact of the proposed method is high.
DOI:doi:10.1109/TPAMI.2011.248
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: http://dx.doi.org/10.1109/TPAMI.2011.248
 DOI: https://doi.org/10.1109/TPAMI.2011.248
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:3D models
 Algorithm design and analysis
 Algorithms
 Animals
 anisotropic localization error
 anisotropic weighting.
 Anisotropy
 Cameras
 computational geometry
 convergence of numerical methods
 convergent iterative closest-point algorithm
 covariance matrices
 Covariance matrix
 data alignment
 Diagnostic Imaging
 geometric alignment
 Head
 Humans
 ICP
 ICP algorithm
 Image Processing, Computer-Assisted
 image registration
 inhomogenous localization error
 isotropic Gaussian noise
 Iterative closest point algorithm
 iterative methods
 Measurement
 medical image processing
 medical imaging data
 mesh extraction
 mesh generation
 Noise
 partial overlapping surfaces
 partial surface registration
 point correspondences
 point-based registration
 point-based surface registration
 Principal Component Analysis
 Rabbits
 Registration
 solid modelling
 surface algorithms
 surface meshes
 Three dimensional displays
K10plus-PPN:1581767331
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68314297   QR-Code
zum Seitenanfang