Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Pinilla, Paola [VerfasserIn]   i
 Benisty, Myriam [VerfasserIn]   i
 Birnstiel, Tilman [VerfasserIn]   i
Titel:Ring shaped dust accumulation in transition disks
Verf.angabe:P. Pinilla, M. Benisty, T. Birnstiel
E-Jahr:2012
Jahr:11 September 2012
Umfang:12 S.
Fussnoten:Gesehen am 25.10.2018
Titel Quelle:Enthalten in: Astronomy and astrophysics
Ort Quelle:Les Ulis : EDP Sciences, 1969
Jahr Quelle:2012
Band/Heft Quelle:545(2012), Artikel-ID A81
ISSN Quelle:1432-0746
Abstract:<i>Context.<i/> Transition disks are believed to be the final stages of protoplanetary disks, during which a forming planetary system or photoevaporation processes open a gap in the inner disk, drastically changing the disk structure. From theoretical arguments it is expected that dust growth, fragmentation and radial drift are strongly influenced by gas disk structure, and pressure bumps in disks have been suggested as key features that may allow grains to converge and grow efficiently.<i>Aims.<i/> We want to study how the presence of a large planet in a disk influences the growth and radial distribution of dust grains, and how observable properties are linked to the mass of the planet.<i>Methods.<i/> We combined two-dimensional hydrodynamical disk simulations of disk-planet interactions with state-of-the-art coagulation/fragmentation models to simulate the evolution of dust in a disk, which has a gap created by a massive planet. We computed images at different wavelengths and illustrated our results using the example of the transition disk LkCa15.<i>Results.<i/> The gap opened by a planet and the long-range interaction between the planet and the outer disk create a single large pressure bump outside the planetary orbit. Millimeter-sized particles form and accumulate at the pressure maximum and naturally produce ring-shaped sub-millimeter emission that is long-lived because radial drift no longer depletes the large grain population of the disk. For large planet masses around 9 <i>M<i/><sub>Jup<sub/>, the pressure maximum and, therefore, the ring of millimeter particles is located at distances that can be more than twice the star-planet separation, creating a large spatial separation between the gas inner edge of the outer disk and the peak millimeter emission. Smaller grains do get closer to the gap and we predict how the surface brightness varies at different wavelengths.
DOI:doi:10.1051/0004-6361/201219315
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: http://dx.doi.org/10.1051/0004-6361/201219315
 Volltext: https://www.aanda.org/articles/aa/abs/2012/09/aa19315-12/aa19315-12.html
 DOI: https://doi.org/10.1051/0004-6361/201219315
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1582292132
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68321211   QR-Code
zum Seitenanfang