| Online-Ressource |
Verfasst von: | Li, Sheng [VerfasserIn]  |
| Zöllner, Frank G. [VerfasserIn]  |
| Merrem, Andreas D. [VerfasserIn]  |
| Schad, Lothar R. [VerfasserIn]  |
Titel: | Wavelet-based segmentation of renal compartments in DCE-MRI of human kidney |
Titelzusatz: | initial results in patients and healthy volunteers |
Verf.angabe: | Sheng Li, Frank G.Zöllner, Andreas D.Merrem, Yinghong Peng, Jarle Roervik, Arvid Lundervold, Lothar R.Schad |
E-Jahr: | 2012 |
Jahr: | March 2012 |
Umfang: | 11 S. |
Fussnoten: | Available online 24 June 2011 ; Gesehen am 06.11.2018 |
Titel Quelle: | Enthalten in: Computerized medical imaging and graphics |
Ort Quelle: | Amsterdam [u.a.] : Elsevier Science, 1988 |
Jahr Quelle: | 2012 |
Band/Heft Quelle: | 36(2012), 2, Seite 108-118 |
ISSN Quelle: | 1879-0771 |
Abstract: | Renal diseases can lead to kidney failure that requires life-long dialysis or renal transplantation. Early detection and treatment can prevent progression towards end stage renal disease. MRI has evolved into a standard examination for the assessment of the renal morphology and function. We propose a wavelet-based clustering to group the voxel time courses and thereby, to segment the renal compartments. This approach comprises (1) a nonparametric, discrete wavelet transform of the voxel time course, (2) thresholding of the wavelet coefficients using Stein's Unbiased Risk estimator, and (3) k-means clustering of the wavelet coefficients to segment the kidneys. Our method was applied to 3D dynamic contrast enhanced (DCE-) MRI data sets of human kidney in four healthy volunteers and three patients. On average, the renal cortex in the healthy volunteers could be segmented at 88%, the medulla at 91%, and the pelvis at 98% accuracy. In the patient data, with aberrant voxel time courses, the segmentation was also feasible with good results for the kidney compartments. In conclusion wavelet based clustering of DCE-MRI of kidney is feasible and a valuable tool towards automated perfusion and glomerular filtration rate quantification. |
DOI: | doi:10.1016/j.compmedimag.2011.06.005 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext ; Verlag: http://dx.doi.org/10.1016/j.compmedimag.2011.06.005 |
| Volltext: https://www.sciencedirect.com/science/article/pii/S0895611111000838 |
| DOI: https://doi.org/10.1016/j.compmedimag.2011.06.005 |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 158263307X |
Verknüpfungen: | → Zeitschrift |
Wavelet-based segmentation of renal compartments in DCE-MRI of human kidney / Li, Sheng [VerfasserIn]; March 2012 (Online-Ressource)