Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Falls, Kevin [VerfasserIn]   i
Titel:Physical renormalization schemes and asymptotic safety in quantum gravity
Verf.angabe:Kevin Falls
Jahr:2017
Umfang:43 S.
Fussnoten:Gesehen am 08.11.2018
Titel Quelle:Enthalten in: Physical review
Ort Quelle:Woodbury, NY : Inst., 2016
Jahr Quelle:2017
Band/Heft Quelle:96(2017), 12, Artikel-ID 126016
ISSN Quelle:2470-0029
Abstract:The methods of the renormalization group and the ϵ-expansion are applied to quantum gravity revealing the existence of an asymptotically safe fixed point in spacetime dimensions higher than two. To facilitate this, physical renormalization schemes are exploited where the renormalization group flow equations take a form which is independent of the parameterisation of the physical degrees of freedom (i.e. the gauge fixing condition and the choice of field variables). Instead the flow equation depends on the anomalous dimensions of reference observables. In the presence of spacetime boundaries we find that the required balance between the Einstein-Hilbert action and Gibbons-Hawking-York boundary term is preserved by the beta functions. Exploiting the ϵ-expansion near two dimensions we consider Einstein gravity coupled to matter. Scheme independence is generically obscured by the loop-expansion due to breaking of two-dimensional Weyl invariance. In schemes which preserve two-dimensional Weyl invariance we avoid the loop expansion and find a unique ultraviolet (UV) fixed point. At this fixed point the anomalous dimensions are large and one must resum all loop orders to obtain the critical exponents. Performing the resummation a set of universal scaling dimensions are found. These scaling dimensions show that only a finite number of matter interactions are relevant. This is a strong indication that quantum gravity is renormalizable.
DOI:doi:10.1103/PhysRevD.96.126016
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: http://dx.doi.org/10.1103/PhysRevD.96.126016
 Volltext: https://link.aps.org/doi/10.1103/PhysRevD.96.126016
 DOI: https://doi.org/10.1103/PhysRevD.96.126016
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1582729549
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68326438   QR-Code
zum Seitenanfang