Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Feder, Stephan Christoph [VerfasserIn]   i
Titel:Sample heterogeneity in unipolar depression as assessed by functional connectivity analyses is dominated by general disease effects
Verf.angabe:Stephan Feder, Benedikt Sundermann, Heike Wersching, Anja Teuber, Harald Kugel, Henning Teismann, Walter Heindel, Klaus Berger, Bettina Pfleiderer
E-Jahr:2017
Jahr:November 2017
Umfang:9 S.
Fussnoten:Gesehen am 13.11.2018
Titel Quelle:Enthalten in: Journal of affective disorders
Ort Quelle:Amsterdam [u.a.] : Elsevier Science, 1979
Jahr Quelle:2017
Band/Heft Quelle:222(2017), Seite 79-87
ISSN Quelle:1573-2517
Abstract:OBJECTIVES: Combinations of resting-state fMRI and machine-learning techniques are increasingly employed to develop diagnostic models for mental disorders. However, little is known about the neurobiological heterogeneity of depression and diagnostic machine learning has mainly been tested in homogeneous samples. Our main objective was to explore the inherent structure of a diverse unipolar depression sample. The secondary objective was to assess, if such information can improve diagnostic classification. MATERIALS AND METHODS: We analyzed data from 360 patients with unipolar depression and 360 non-depressed population controls, who were subdivided into two independent subsets. Cluster analyses (unsupervised learning) of functional connectivity were used to generate hypotheses about potential patient subgroups from the first subset. The relationship of clusters with demographical and clinical measures was assessed. Subsequently, diagnostic classifiers (supervised learning), which incorporated information about these putative depression subgroups, were trained. RESULTS: Exploratory cluster analyses revealed two weakly separable subgroups of depressed patients. These subgroups differed in the average duration of depression and in the proportion of patients with concurrently severe depression and anxiety symptoms. The diagnostic classification models performed at chance level. LIMITATIONS: It remains unresolved, if subgroups represent distinct biological subtypes, variability of continuous clinical variables or in part an overfitting of sparsely structured data. CONCLUSIONS: Functional connectivity in unipolar depression is associated with general disease effects. Cluster analyses provide hypotheses about potential depression subtypes. Diagnostic models did not benefit from this additional information regarding heterogeneity.
DOI:doi:10.1016/j.jad.2017.06.055
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: http://dx.doi.org/10.1016/j.jad.2017.06.055
 DOI: https://doi.org/10.1016/j.jad.2017.06.055
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Case-Control Studies
 Cluster Analysis
 Cluster-analysis
 Depression
 Depressive Disorder, Major
 Diagnostic classification
 Female
 Functional connectivity
 Functional Neuroimaging
 Heterogeneity
 Humans
 Magnetic Resonance Imaging
 Male
 Middle Aged
 Rest
 Subtypes
K10plus-PPN:1583670297
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68327780   QR-Code
zum Seitenanfang