Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Stock, Christian [VerfasserIn]   i
 Mons, Ute [VerfasserIn]   i
 Brenner, Hermann [VerfasserIn]   i
Titel:Projection of cancer incidence rates and case numbers until 2030
Titelzusatz:a probabilistic approach applied to German cancer registry data (1999-2013)
Verf.angabe:Christian Stock, Ute Mons, Hermann Brenner
E-Jahr:2018
Jahr:December 2018
Umfang:10 S.
Fussnoten:Gesehen am 20.12.2018
Titel Quelle:Enthalten in: Cancer epidemiology
Ort Quelle:Amsterdam [u.a.] : Elsevier, 2009
Jahr Quelle:2018
Band/Heft Quelle:57(2018), Seite 110-119
ISSN Quelle:1877-783X
Abstract:Background - Cancer incidence projections are of major interest for resource allocation in healthcare and medical research. Previous reports of cancer incidence projections have often been deterministic, i.e. lacking quantification of uncertainty. We project cancer incidence in Germany by applying an approach that allows for probabilistic interpretation of outcomes. - Material and methods - German cancer registry data from 1999 to 2013 are used to predict cancer incidence for 27 sites until the year 2030. We apply Bayesian Poisson and negative binomial models to obtain probabilistic estimates of future site-, year-, sex- and age-specific cancer incidence rates. Results from cancer incidence models are combined with probabilistic population projections to estimate numbers of incident cancer cases. Comparisons of overall and stratum-specific cancer incidence rates and case numbers are made between the years 2015 and 2030 by estimating absolute and relative change along with uncertainty intervals. - Results - The overall standardized incidence rate is expected to increase by 5% (95%-credible interval: 0%, 13%) until 2030. Incident case numbers are expected to increase by 23% (95%-credible interval: 17%, 29%) which is mostly driven by demographic change. The probability (expressed as %) that the change will be >10%, >20% or >30% was calculated to be >99%, 66% and 7%, respectively. - Conclusions - The analysis provides evidence on the future cancer burden in Germany by applying a fully Bayesian approach that offers advantages in terms of flexibility, probabilistic interpretability, and transparency. It may especially be an alternative when long-term cancer incidence data are missing.
DOI:doi:10.1016/j.canep.2018.10.011
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: http://dx.doi.org/10.1016/j.canep.2018.10.011
 Volltext: http://www.sciencedirect.com/science/article/pii/S1877782118303758
 DOI: https://doi.org/10.1016/j.canep.2018.10.011
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Bayesian method
 Cancer
 Demography
 Epidemiologic methods
 Epidemiology
 Forecasting
 Germany
K10plus-PPN:1585790435
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68342886   QR-Code
zum Seitenanfang