Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Zahn, Felix [VerfasserIn]   i
 Lammel, Steffen [VerfasserIn]   i
 Fröning, Holger [VerfasserIn]   i
Titel:On link width scaling for energy-proportional direct interconnection networks
Verf.angabe:Felix Zahn, Steffen Lammel, Holger Fröning
Jahr:2019
Umfang:16 S.
Fussnoten:First published: 12 February 2018 ; Gesehen am 28.02.2019
Titel Quelle:Enthalten in: Concurrency and computation
Ort Quelle:Chichester : Wiley, 2001
Jahr Quelle:2019
Band/Heft Quelle:31(2019), 2, Artikel-ID e4439, Seite 1-16
ISSN Quelle:1532-0634
Abstract:Energy consumption is one of the most important design parameters for future large-scale computing systems. While the end of Dennard scaling demands for increasing energy-proportional components, interconnection networks have not received much attention regarding this topic. However, these networks are expected to contribute about 20% to the overall power consumption of these systems in the near future. Furthermore, this fraction increases if other energy-proportional components, such as CPUs, accelerators, and memory, are not fully utilized. To avoid becoming the main contributor to power consumption and to reduce overall power consumption, it is mandatory to improve the energy-proportionality of interconnection networks. In this work, we analyze different aspects of energy-proportionality in interconnection networks for systems designed within current technical constraints but also for future systems that might be designed with different parameters. First, we discuss the impact of multiple design parameters and the most feasible approach for improved energy consumption, such as transition time and power state granularity. Based on this study, we introduce three different power saving policies, which try to address different requirements. While an on/off policy allows for large energy savings, it can also cause significant performance losses for adverse setups. In order to meet the demand for sustainable performance, we present two new policies that trade power saving potential for performance. For all three workload classes, we use a power-aware network simulation to report the impact on execution time and energy consumption compared to the current situation and an idealized network. While we show that a highly regular pattern enables power saving possibilities close to the theoretical minimum, even slight deviations from such a highly iterative and temporal behavior demand for further improvements in all policies.
DOI:doi:10.1002/cpe.4439
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: http://dx.doi.org/10.1002/cpe.4439
 Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4439
 DOI: https://doi.org/10.1002/cpe.4439
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:energy-proportionality
 interconnection networks
 network simulation
 power saving
K10plus-PPN:1588213676
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68364338   QR-Code
zum Seitenanfang