Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Huang, Jiaguo [VerfasserIn]   i
 Brenna, Cinzia [VerfasserIn]   i
 Khan, Arif ul Maula [VerfasserIn]   i
 Daniele, Cristina [VerfasserIn]   i
 Rudolf, Rüdiger [VerfasserIn]   i
 Heuveline, Vincent [VerfasserIn]   i
 Gretz, Norbert [VerfasserIn]   i
Titel:A cationic near infrared fluorescent agent and ethyl-cinnamate tissue clearing protocol for vascular staining and imaging
Verf.angabe:Jiaguo Huang, Cinzia Brenna, Arif ul Maula Khan, Cristina Daniele, Rüdiger Rudolf, Vincent Heuveline & Norbert Gretz
E-Jahr:2019
Jahr:24 January 2019
Umfang:13 S.
Fussnoten:Gesehen am 04.03.2019
Titel Quelle:Enthalten in: Scientific reports
Ort Quelle:[London] : Springer Nature, 2011
Jahr Quelle:2019
Band/Heft Quelle:9(2019) Artikel-Nummer 521, 13 Seiten
ISSN Quelle:2045-2322
Abstract:Understanding vascular structures and dysfunction is a fundamental challenge. This task has been approached by using traditional methodologies such as microscopic computed tomography and magnetic resonance imaging. Both techniques are not only expensive but also time-consuming. Here, we present a new method for visualizing vascular structures in different organs in an efficient manner. A cationic near infrared (NIR) fluorescent dye was developed with attractive features to specifically stain blood vessels. Furthermore, we refined the process of organ staining and harvesting by retrograde perfusion and optimized the subsequent dehydration and clearing process by the use of an automatic tissue processor and a non-toxic substance, ethyl-cinnamate. Using this approach, the time interval between organ harvesting and microscopic analysis can be reduced from day(s) or weeks to 4 hours. Finally, we have demonstrated that the new NIR fluorescent agent in combination with confocal or light-sheet microscopy can be efficiently used for visualization of vascular structures, such as the blood vessels in different organs e.g. glomeruli in kidneys, with an extremely high resolution. Our approach facilitates the development of automatic image processing and the quantitative analysis to study vascular and kidney diseases.
DOI:doi:10.1038/s41598-018-36741-1
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: http://dx.doi.org/10.1038/s41598-018-36741-1
 Volltext: https://www.nature.com/articles/s41598-018-36741-1
 DOI: https://doi.org/10.1038/s41598-018-36741-1
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1588276872
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68365035   QR-Code
zum Seitenanfang