Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---

+ Andere Auflagen/Ausgaben
heiBIB
 Online-Ressource
Verfasst von:D'Isanto, Antonio [VerfasserIn]   i
Titel:Probabilistic photometric redshift estimation in massive digital sky surveys via machine learning
Mitwirkende:Wambsganß, Joachim [AkademischeR BetreuerIn]   i
Verf.angabe:Put forward by Antonio D'Isanto ; referees: Prof. Dr. Joachim Wambsganß, Dr. Coryn Bailer-Jones
Verlagsort:Heidelberg
Jahr:2019
Umfang:1 Online-Ressource (108 Seiten)
Illustrationen:Illustrationen, Diagramme
Schrift/Sprache:Mit einer Zusammenfassung in deutscher und englischer Sprache
Hochschulschrift:Dissertation, Ruperto-Carola-University of Heidelberg, 2019
Abstract:Abstract: The problem of photometric redshift estimation is a major subject in astronomy, since the need of estimating distances for a huge number of sources, as required by the data deluge of the recent years. The ability to estimate redshifts through spectroscopy does not scale with this avalanche of data. Photometric redshifts provide the required redshift estimates at the cost of some precision. The success of several forthcoming missions is highly dependent on the availability of photometric redshifts. The purpose of this thesis is to provide innovative methods for photometric redshift estimation. Two models are proposed. The first is fully-automatized, based on the combination of a convolutional neural network with a mixture density network, to predict probabilistic multimodal redshifts directly from images. The second model is features-based, performing a massive combination of photometric parameters to apply a forward selection in a huge feature space. The proposed models perform very efficiently compared to some of the most common models used in the literature. An important part of the work is dedicated to the correct estimation of the errors and prediction quality. The proposed models are very general and can be applied to different topics in astronomy and beyond.
DOI:doi:10.11588/heidok.00026000
URL:kostenfrei: Volltext: http://dx.doi.org/10.11588/heidok.00026000
 kostenfrei: Volltext: http://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-260000
 Volltext: https://nbn-resolving.org/urn:nbn:de:bsz:16-heidok-260000
 Volltext: http://d-nb.info/1179232658/34
 kostenfrei: Volltext: http://www.ub.uni-heidelberg.de/archiv/26000
 Unbekannt: https://doi.org/10.11588/heidok.00026000
 DOI: https://doi.org/10.11588/heidok.00026000
URN:urn:nbn:de:bsz:16-heidok-260000
Datenträger:Online-Ressource
Dokumenttyp:Hochschulschrift
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Druck-Ausgabe: D'Isanto, Antonio, 1985 - : Probabilistic photometric redshift estimation in massive digital sky surveys via machine learning. - Heidelberg, 2019. - 108 Seiten
K10plus-PPN:1656013843
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68369210   QR-Code
zum Seitenanfang