Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---

+ Andere Auflagen/Ausgaben
heiBIB
 Online-Ressource
Verfasst von:Gutekunst, Jürgen [VerfasserIn]   i
Titel:Feedback control for average output systems
Mitwirkende:Potschka, Andreas [AkademischeR BetreuerIn]   i
Verf.angabe:vorgelegt von Dipl.-Math. Jürgen Gutekunst ; Gutachter PD Dr. Andreas Potschka, Prof. Dr. Dr. h.c. mult. Hans Georg Bock
Verlagsort:Heidelberg
E-Jahr:2019
Jahr:21 Feb. 2019
Umfang:1 Online-Ressource (IV, 191 Seiten)
Schrift/Sprache:Mit einer Zusammenfassung in deutscher und englischer Sprache
Hochschulschrift:Dissertation, Universität Heidelberg, 2019
Abstract:Abstract: In this work we propose new methods for the design of economic Nonlinear Model Predictive Control (NMPC) feedback schemes for Average Output Optimal Control Problems (AOCPs). AOCPs are Optimal Control Problems (OCPs) defined on infinite time horizons with averaging performance critera as objective functionals. Such problems arise frequently for continuously operating systems such as for example power plants. Due to the infinite time horizon and the resulting intrinsic nonuniqueness of solutions, the design of appropriate NMPC schemes for AOCPs is challenging. Often, the analysis of the closed-loop behavior of economic NMPC schemes depends on dissipativity conditions on the dynamical system and the associated performance criterion, which sometimes can be hard to check. The methods we develop are based on the observation that periodic solutions exhibit excellent approximation properties for AOCPs, which is exploited by splitting the time horizon and the objective functional of the NMPC subproblems into a transient and a periodic part. For the analysis of the closed-loop behavior of the resulting controller we develop new methods that essentially work by showing that the (appropriately defined) difference of two subsequent NMPC subproblem solutions vanishes asymptotically. Complementary to many other economic NMPC schemes, this approach is not based on dissipativity assumptions on the dynamical system and the associated performance criterion but rather on assumptions on existence of periodic orbits, controllability of the dynamical system, and uniqueness of the NMPC subproblem solutions itself. As a result, we can show that the economic performance of the closed-loop system is equal to the economic performance of the optimal periodic solutions. Furthermore, the approach is extended in two directions. First, we consider the general setting of a parameter dependent dynamical system where the parameter can be subject to change during operation. This parameter change can lead to a change in the optimal periodic behavior, in particular also to a change of the optimal period, which we take into account by including the period as an optimization variable in the NMPC subproblem. Second, we show that the approach can also be applied to systems with time-dependent periodic performance criteria. All the described methods are implemented within the MATLAB NMPC toolkit MLI and are applied to a number of demanding applications. The simulation results confirm that the generated closed-loop trajectories perform economically equally well as the optimal periodic trajectories.
DOI:doi:10.11588/heidok.00026106
URL:kostenfrei: Volltext: http://dx.doi.org/10.11588/heidok.00026106
 kostenfrei: Volltext: http://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-261068
 Volltext: https://nbn-resolving.org/urn:nbn:de:bsz:16-heidok-261068
 Volltext: http://d-nb.info/1179232763/34
 kostenfrei: Volltext: http://www.ub.uni-heidelberg.de/archiv/26106
 Unbekannt: https://doi.org/10.11588/heidok.00026106
 DOI: https://doi.org/10.11588/heidok.00026106
URN:urn:nbn:de:bsz:16-heidok-261068
Datenträger:Online-Ressource
Dokumenttyp:Hochschulschrift
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Druck-Ausgabe: Gutekunst, Jürgen, 1983 - : Feedback control for average output systems. - Heidelberg, 2019. - IV, 191 Seiten
K10plus-PPN:1656014572
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68369226   QR-Code
zum Seitenanfang