Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Casadonte, Rita [VerfasserIn]   i
 Kriegsmann, Mark [VerfasserIn]   i
 Kriegsmann, Katharina [VerfasserIn]   i
Titel:Development of a class prediction model to discriminate pancreatic ductal adenocarcinoma from pancreatic neuroendocrine tumor by MALDI mass spectrometry imaging
Verf.angabe:Rita Casadonte, Mark Kriegsmann, Aurel Perren, Gustavo Baretton, Sören-Oliver Deininger, Katharina Kriegsmann, Thilo Welsch, Christian Pilarsky, Jörg Kriegsmann
E-Jahr:2019
Jahr:January 2019
Jahr des Originals:2018
Illustrationen:Illustrationen
Fussnoten:First published: 13 December 2018 ; Gesehen am 01.04.2019
Titel Quelle:Enthalten in: Proteomics / Clinical applications
Ort Quelle:Weinheim : Wiley VCH, 2007
Jahr Quelle:2019
Band/Heft Quelle:13 (2019) Artikel-Nummer 1800046, Seite 1-8, 8 Seiten
ISSN Quelle:1862-8354
Abstract:Purpose To define proteomic differences between pancreatic ductal adenocarcinoma (pDAC) and pancreatic neuroendocrine tumor (pNET) by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI). Experimental design Ninety-three pDAC and 126 pNET individual tissues are assembled in tissue microarrays and analyzed by MALDI MSI. The cohort is separated in a training (52 pDAC and 83 pNET) and validation set (41 pDAC and 43 pNET). Subsequently, a linear discriminant analysis (LDA) model based on 46 peptide ions is performed on the training set and evaluated on the validation cohort. Additionally, two liver metastases and a whole slide of pDAC are analyzed by the same LDA algorithm. Results Classification of pDAC and pNET by the LDA model is correct in 95% (39/41) and 100% (43/43) of patients in the validation cohort, respectively. The two liver metastases and the whole slide of pDAC are also correctly classified in agreement with the histopathological diagnosis. Conclusion and clinical relevance In the present study, a large dataset of pDAC and pNET by MALDI MSI is investigated, a class prediction model that allowed separation of both entities with high accuracy is developed, and differential peptide peaks with potential diagnostic, prognostic, and predictive values are highlighted.
DOI:doi:10.1002/prca.201800046
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1002/prca.201800046
 Volltext: https://www.onlinelibrary.wiley.com/doi/abs/10.1002/prca.201800046
 DOI: https://doi.org/10.1002/prca.201800046
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:formalin-fixed paraffin embedded (FFPE)
 matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI)
 neuroendocrine-tumor
 pancreas
 tumor typing
K10plus-PPN:1662587201
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68377946   QR-Code
zum Seitenanfang