Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Sadeghzadeh Nokhodberiz, Nargess [VerfasserIn]   i
 Poshtan, Javad [VerfasserIn]   i
 Wagner, Achim [VerfasserIn]   i
 Nordheimer, Eugen [VerfasserIn]   i
 Badreddin, Essameddin [VerfasserIn]   i
Titel:Distributed observers for pose estimation in the presence of inertial sensory soft faults
Verf.angabe:Nargess Sadeghzadeh-Nokhodberiz, Javad Poshtan, Achim Wagner, Eugen Nordheimer, Essameddin Badreddin
E-Jahr:2014
Jahr:20 May 2014
Umfang:13 S.
Fussnoten:Gesehen am 11.04.2019
Titel Quelle:Enthalten in: Instrumentation, Systems, and Automation SocietyISA transactions
Ort Quelle:Amsterdam [u.a.] : Elsevier, 1989
Jahr Quelle:2014
Band/Heft Quelle:53(2014), 4, Seite 1307-1319
ISSN Quelle:1879-2022
Abstract:Distributed Particle-Kalman Filter based observers are designed in this paper for inertial sensors (gyroscope and accelerometer) soft faults (biases and drifts) and rigid body pose estimation. The observers fuse inertial sensors with Photogrammetric camera. Linear and angular accelerations as unknown inputs of velocity and attitude rate dynamics, respectively, along with sensory biases and drifts are modeled and augmented to the moving body state parameters. To reduce the complexity of the high dimensional and nonlinear model, the graph theoretic tearing technique (structural decomposition) is employed to decompose the system to smaller observable subsystems. Separate interacting observers are designed for the subsystems which are interacted through well-defined interfaces. Kalman Filters are employed for linear ones and a Modified Particle Filter for a nonlinear non-Gaussian subsystem which includes imperfect attitude rate dynamics is proposed. The main idea behind the proposed Modified Particle Filtering approach is to engage both system and measurement models in the particle generation process. Experimental results based on data from a 3D MEMS IMU and a 3D camera system are used to demonstrate the efficiency of the method.
DOI:doi:10.1016/j.isatra.2014.04.002
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.isatra.2014.04.002
 DOI: https://doi.org/10.1016/j.isatra.2014.04.002
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Kalman Filtering
 Large Scale Systems
 MEMS IMU
 Particle Filtering
 Photogrammetry
 Pose Estimation
 Sensor fault diagnosis
 Sensor fusion
 System decomposition
 Vision based navigation
K10plus-PPN:1663113858
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68380123   QR-Code
zum Seitenanfang