Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Wahl, Niklas [VerfasserIn]   i
 Bangert, Mark [VerfasserIn]   i
Titel:Analytical incorporation of fractionation effects in probabilistic treatment planning for intensity-modulated proton therapy
Verf.angabe:Niklas Wahl, Philipp Hennig, Hans-Peter Wieser, Mark Bangert
E-Jahr:2018
Jahr:27 February 2018
Umfang:12 S.
Fussnoten:Gesehen am 23.04.2019
Titel Quelle:Enthalten in: Medical physics
Ort Quelle:Hoboken, NJ : Wiley, 1974
Jahr Quelle:2018
Band/Heft Quelle:45(2018), 4, Seite 1317-1328
ISSN Quelle:2473-4209
 1522-8541
Abstract:PURPOSE: We show that it is possible to explicitly incorporate fractionation effects into closed-form probabilistic treatment plan analysis and optimization for intensity-modulated proton therapy with analytical probabilistic modeling (APM). We study the impact of different fractionation schemes on the dosimetric uncertainty induced by random and systematic sources of range and setup uncertainty for treatment plans that were optimized with and without consideration of the number of treatment fractions. - METHODS: The APM framework is capable of handling arbitrarily correlated uncertainty models including systematic and random errors in the context of fractionation. On this basis, we construct an analytical dose variance computation pipeline that explicitly considers the number of treatment fractions for uncertainty quantitation and minimization during treatment planning. We evaluate the variance computation model in comparison to random sampling of 100 treatments for conventional and probabilistic treatment plans under different fractionation schemes (1, 5, 30 fractions) for an intracranial, a paraspinal and a prostate case. The impact of neglecting the fractionation scheme during treatment planning is investigated by applying treatment plans that were generated with probabilistic optimization for 1 fraction in a higher number of fractions and comparing them to the probabilistic plans optimized under explicit consideration of the number of fractions. - RESULTS: APM enables the construction of an analytical variance computation model for dose uncertainty considering fractionation at negligible computational overhead. It is computationally feasible (a) to simultaneously perform a robustness analysis for all possible fraction numbers and (b) to perform a probabilistic treatment plan optimization for a specific fraction number. The incorporation of fractionation assumptions for robustness analysis exposes a dose to uncertainty trade-off, i.e., the dose in the organs at risk is increased for a reduced fraction number and/or for more robust treatment plans. By explicit consideration of fractionation effects during planning, we demonstrate that it is possible to exploit this trade-off during optimization. APM optimization considering the fraction number reduced the dose in organs at risk compared to conventional probabilistic optimization neglecting the fraction number. - CONCLUSION: APM enables computationally efficient incorporation of fractionation effects in probabilistic uncertainty analysis and probabilistic treatment plan optimization. The consideration of the fractionation scheme in probabilistic treatment planning reveals the trade-off between number of fractions, nominal dose, and treatment plan robustness.
DOI:doi:10.1002/mp.12775
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: http://dx.doi.org/10.1002/mp.12775
 DOI: https://doi.org/10.1002/mp.12775
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:fractionation
 inverse planning
 Linear Models
 Monte Carlo Method
 proton therapy
 Radiometry
 Radiotherapy Planning, Computer-Assisted
 Radiotherapy, Intensity-Modulated
 random and systematic errors
 uncertainty
 Uncertainty
K10plus-PPN:1663459630
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68381705   QR-Code
zum Seitenanfang