| Online-Ressource |
Verfasst von: | Sultan, Cheryl Sophia [VerfasserIn]  |
| Saackel, Andrea [VerfasserIn]  |
| Stank, Antonia [VerfasserIn]  |
| Fleming, Thomas [VerfasserIn]  |
| Wade, Rebecca C. [VerfasserIn]  |
| Hecker, Markus [VerfasserIn]  |
| Wagner, Andreas H. [VerfasserIn]  |
Titel: | Impact of carbonylation on glutathione peroxidase-1 activity in human hyperglycemic endothelial cells |
Verf.angabe: | Cheryl S. Sultan, Andrea Saackel, Antonia Stank, Thomas Fleming, Maria Fedorova, Ralf Hoffmann, Rebecca C. Wade, Markus Hecker, Andreas H. Wagner |
E-Jahr: | 2018 |
Jahr: | 01 March 2018 |
Umfang: | 10 S. |
Teil: | volume:16 |
| year:2018 |
| pages:113-122 |
| extent:10 |
Fussnoten: | Gesehen am 03.08.2019 |
Titel Quelle: | Enthalten in: Redox Biology |
Ort Quelle: | Amsterdam [u.a.] : Elsevier, 2013 |
Jahr Quelle: | 2018 |
Band/Heft Quelle: | 16(2018), Seite 113-122 |
ISSN Quelle: | 2213-2317 |
Abstract: | Aims - High levels of glucose and reactive carbonyl intermediates of its degradation pathway such as methylglyoxal (MG) may contribute to diabetic complications partly via increased generation of reactive oxygen species (ROS). This study focused on glutathione peroxidase-1 (GPx1) expression and the impact of carbonylation as an oxidative protein modification on GPx1 abundance and activity in human umbilical vein endothelial cells (HUVEC) under conditions of mild to moderate oxidative stress. - Results - High extracellular glucose and MG enhanced intracellular ROS formation in HUVECs. Protein carbonylation was only transiently augmented pointing to an effective antioxidant defense in these cells. Nitric oxide synthase expression was decreased under hyperglycemic conditions but increased upon exposure to MG, whereas superoxide dismutase expression was not significantly affected. Increased glutathione peroxidase (GPx) activity seemed to compensate for a decrease in GPx1 protein due to enhanced degradation via the proteasome. Mass spectrometry analysis identified Lys-114 as a possible carbonylation target which provides a vestibule for the substrate H2O2 and thus enhances the enzymatic reaction. - Innovation - Oxidative protein carbonylation has so far been associated with functional inactivation of modified target proteins mainly contributing to aging and age-related diseases. Here, we demonstrate that mild oxidative stress and subsequent carbonylation seem to activate protective cellular redox signaling pathways whereas severe oxidative stress overwhelms the cellular antioxidant defense leading to cell damage. - Conclusions - This study may contribute to a better understanding of redox homeostasis and its role in the development of diabetes and related vascular complications. |
DOI: | doi:10.1016/j.redox.2018.02.018 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext ; Verlag: https://doi.org/10.1016/j.redox.2018.02.018 |
| Volltext: http://www.sciencedirect.com/science/article/pii/S2213231718300533 |
| DOI: https://doi.org/10.1016/j.redox.2018.02.018 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | Endothelial cells |
| Glutathione peroxidase-1 |
| Hyperglycemia |
| Protein carbonylation |
| Reactive oxygen species |
K10plus-PPN: | 1663602816 |
Verknüpfungen: | → Zeitschrift |
Impact of carbonylation on glutathione peroxidase-1 activity in human hyperglycemic endothelial cells / Sultan, Cheryl Sophia [VerfasserIn]; 01 March 2018 (Online-Ressource)