Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Brinker, Titus Josef [VerfasserIn]   i
 Hekler, Achim [VerfasserIn]   i
 Hauschild, Axel [VerfasserIn]   i
 Berking, Carola [VerfasserIn]   i
 Schilling, Bastian [VerfasserIn]   i
 Enk, Alexander [VerfasserIn]   i
 Haferkamp, Sebastian [VerfasserIn]   i
 Karoglan, Ante [VerfasserIn]   i
 Kalle, Christof von [VerfasserIn]   i
 Weichenthal, Michael [VerfasserIn]   i
 Sattler, Elke [VerfasserIn]   i
 Schadendorf, Dirk [VerfasserIn]   i
 Gaiser, Maria [VerfasserIn]   i
 Klode, Joachim [VerfasserIn]   i
 Utikal, Jochen [VerfasserIn]   i
Titel:Comparing artificial intelligence algorithms to 157 German dermatologists
Titelzusatz:the melanoma classification benchmark
Verf.angabe:Titus J. Brinker, Achim Hekler, Axel Hauschild, Carola Berking, Bastian Schilling, Alexander H. Enk, Sebastian Haferkamp, Ante Karoglan, Christof von Kalle, Michael Weichenthal, Elke Sattler, Dirk Schadendorf, Maria R. Gaiser, Joachim Klode, Jochen S. Utikal
E-Jahr:2019
Jahr:22 February 2019
Umfang:8 S.
Fussnoten:Gesehen am 26.04.2019
Titel Quelle:Enthalten in: European journal of cancer
Ort Quelle:Amsterdam [u.a.] : Elsevier, 1992
Jahr Quelle:2019
Band/Heft Quelle:111(2019), Seite 30-37
ISSN Quelle:1879-0852
Abstract:Background - Several recent publications have demonstrated the use of convolutional neural networks to classify images of melanoma at par with board-certified dermatologists. However, the non-availability of a public human benchmark restricts the comparability of the performance of these algorithms and thereby the technical progress in this field. - Methods - An electronic questionnaire was sent to dermatologists at 12 German university hospitals. Each questionnaire comprised 100 dermoscopic and 100 clinical images (80 nevi images and 20 biopsy-verified melanoma images, each), all open-source. The questionnaire recorded factors such as the years of experience in dermatology, performed skin checks, age, sex and the rank within the university hospital or the status as resident physician. For each image, the dermatologists were asked to provide a management decision (treat/biopsy lesion or reassure the patient). Main outcome measures were sensitivity, specificity and the receiver operating characteristics (ROC). - Results - Total 157 dermatologists assessed all 100 dermoscopic images with an overall sensitivity of 74.1%, specificity of 60.0% and an ROC of 0.67 (range = 0.538-0.769); 145 dermatologists assessed all 100 clinical images with an overall sensitivity of 89.4%, specificity of 64.4% and an ROC of 0.769 (range = 0.613-0.9). Results between test-sets were significantly different (P < 0.05) confirming the need for a standardised benchmark. - Conclusions - We present the first public melanoma classification benchmark for both non-dermoscopic and dermoscopic images for comparing artificial intelligence algorithms with diagnostic performance of 145 or 157 dermatologists. Melanoma Classification Benchmark should be considered as a reference standard for white-skinned Western populations in the field of binary algorithmic melanoma classification.
DOI:doi:10.1016/j.ejca.2018.12.016
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Verlag ; Resolving-System: https://doi.org/10.1016/j.ejca.2018.12.016
 Volltext: http://www.sciencedirect.com/science/article/pii/S0959804918315624
 DOI: https://doi.org/10.1016/j.ejca.2018.12.016
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Artificial intelligence
 Benchmark
 Deep learning
 Melanoma
K10plus-PPN:1663654581
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68382819   QR-Code
zum Seitenanfang