Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Toutounji, Hazem [VerfasserIn]   i
 Durstewitz, Daniel [VerfasserIn]   i
Titel:Detecting multiple change points using adaptive regression splines with application to neural recordings
Verf.angabe:Hazem Toutounji and Daniel Durstewitz
E-Jahr:2018
Jahr:04 October 2018
Umfang:17 S.
Fussnoten:Gesehen am 03.05.2019
Titel Quelle:Enthalten in: Frontiers in neuroinformatics
Ort Quelle:Lausanne : Frontiers Research Foundation, 2007
Jahr Quelle:2018
Band/Heft Quelle:12(2018)
ISSN Quelle:1662-5196
Abstract:Time series, as frequently the case in neuroscience, are rarely stationary, but often exhibit abrupt changes due to attractor transitions or bifurcations in the dynamical systems producing them. A plethora of methods for detecting such change points in time series statistics have been developed over the years, in addition to test criteria to evaluate their significance. Issues to consider when developing change point analysis methods include computational demands, difficulties arising from either limited amount of data or a large number of covariates, and arriving at statistical tests with sufficient power to detect as many changes as contained in potentially high-dimensional time series. Here, a general method called Paired Adaptive Regressors for Cumulative Sum is developed for detecting multiple change points in the mean of multivariate time series. The method's advantages over alternative approaches are demonstrated through a series of simulation experiments. This is followed by a real data application to neural recordings from rat medial prefrontal cortex during learning. Finally, the method's flexibility to incorporate useful features from state-of-the-art change point detection techniques is discussed, along with potential drawbacks and suggestions to remedy them.
DOI:doi:10.3389/fninf.2018.00067
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.3389/fninf.2018.00067
 Volltext: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187984/
 DOI: https://doi.org/10.3389/fninf.2018.00067
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1664554270
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68384311   QR-Code
zum Seitenanfang