| Online-Ressource |
Verfasst von: | Chantesana, Isara [VerfasserIn]  |
| Piñeiro Orioli, Asier [VerfasserIn]  |
| Gasenzer, Thomas [VerfasserIn]  |
Titel: | Kinetic theory of non-thermal fixed points in a Bose gas |
Verf.angabe: | Isara Chantesana, Asier Piñeiro Orioli, and Thomas Gasenzer |
E-Jahr: | 2019 |
Jahr: | 19 April 2019 |
Umfang: | 46 S. |
Fussnoten: | Gesehen am 09.05.2019 |
Titel Quelle: | Enthalten in: Physical review |
Ort Quelle: | Woodbury, NY : Inst., 2016 |
Jahr Quelle: | 2019 |
Band/Heft Quelle: | 99(2019,4) Artikel-Nummer 043620, 46 Seiten |
ISSN Quelle: | 2469-9934 |
Abstract: | We outline a kinetic theory of non-thermal fixed points for the example of a dilute Bose gas, partially reviewing results obtained earlier, thereby extending, complementing, generalizing and straightening them out. We study universal dynamics after a cooling quench, focusing on situations where the time evolution represents a pure rescaling of spatial correlations, with time defining the scale parameter. The non-equilibrium initial condition set by the quench induces a redistribution of particles in momentum space. Depending on conservation laws, this can take the form of a wave-turbulent flux or of a more general self-similar evolution, signaling the critically slowed approach to a non-thermal fixed point. We identify such fixed points using a non-perturbative kinetic theory of collective scattering between highly occupied long-wavelength modes. In contrast, a wave-turbulent flux, possible in the perturbative Boltzmann regime, builds up in a critically accelerated self-similar manner. A key result is the simple analytical universal scaling form of the non-perturbative many-body scattering matrix, for which we lay out the concrete conditions under which it applies. We derive the scaling exponents for the time evolution as well as for the power-law tail of the momentum distribution function, for a general dynamical critical exponent $z$ and an anomalous scaling dimension $\eta$. The approach of the non-thermal fixed point is, in particular, found to involve a rescaling of momenta in time $t$ by $t^{\beta}$, with $\beta=1/z$, within our kinetic approach independent of $\eta$. We confirm our analytical predictions by numerically evaluating the kinetic scattering integral as well as the non-perturbative many-body coupling function. As a side result we obtain a possible finite-size interpretation of wave-turbulent scaling recently measured by Navon et al. |
DOI: | doi:10.1103/PhysRevA.99.043620 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext: https://doi.org/10.1103/PhysRevA.99.043620 |
| DOI: https://doi.org/10.1103/PhysRevA.99.043620 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | Condensed Matter - Statistical Mechanics |
| High Energy Physics - Phenomenology |
| Condensed Matter - Quantum Gases |
| Physics - Fluid Dynamics |
K10plus-PPN: | 1665083662 |
Verknüpfungen: | → Zeitschrift |
Kinetic theory of non-thermal fixed points in a Bose gas / Chantesana, Isara [VerfasserIn]; 19 April 2019 (Online-Ressource)