Status: Bibliographieeintrag
Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Aprupe, Lilija [VerfasserIn]  |
| Brinker, Titus Josef [VerfasserIn]  |
| Grabe, Niels [VerfasserIn]  |
Titel: | Robust and accurate quantification of biomarkers of immune cells in lung cancer micro-environment using deep convolutional neural networks |
Verf.angabe: | Lilija Aprupe, Geert Litjens, Titus J. Brinker, Jeroen van der Laak, Niels Grabe |
E-Jahr: | 2019 |
Jahr: | April 10, 2019 |
Umfang: | 16 S. |
Fussnoten: | Gesehen am 03.06.2019 |
Titel Quelle: | Enthalten in: PeerJ |
Ort Quelle: | London [u.a.] : PeerJ, Inc., 2013 |
Jahr Quelle: | 2019 |
Band/Heft Quelle: | 7(2019) Artikel-Nummer e6335, 16 Seiten |
ISSN Quelle: | 2167-8359 |
Abstract: | Recent years have seen a growing awareness of the role the immune system plays in successful cancer treatment, especially in novel therapies like immunotherapy. The characterization of the immunological composition of tumors and their micro-environment is thus becoming a necessity. In this paper we introduce a deep learning-based immune cell detection and quantification method, which is based on supervised learning, i.e., the input data for training comprises labeled images. Our approach objectively deals with staining variation and staining artifacts in immunohistochemically stained lung cancer tissue and is as precise as humans. This is evidenced by the low cell count difference to humans of 0.033 cells on average. This method, which is based on convolutional neural networks, has the potential to provide a new quantitative basis for research on immunotherapy. |
DOI: | doi:10.7717/peerj.6335 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext: http://dx.doi.org/10.7717/peerj.6335 |
| DOI: https://doi.org/10.7717/peerj.6335 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | Biomarker quantification |
| Cancer micro-environment |
| Deep learning |
| Immune cells |
| Lung cancer |
K10plus-PPN: | 1666612391 |
Verknüpfungen: | → Zeitschrift |
Robust and accurate quantification of biomarkers of immune cells in lung cancer micro-environment using deep convolutional neural networks / Aprupe, Lilija [VerfasserIn]; April 10, 2019 (Online-Ressource)
68394764