Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Mavaddat, Nasim [VerfasserIn]   i
 Arndt, Volker [VerfasserIn]   i
 Schneeweiss, Andreas [VerfasserIn]   i
 Sohn, Christof [VerfasserIn]   i
 Brenner, Hermann [VerfasserIn]   i
 Kaaks, Rudolf [VerfasserIn]   i
 Burwinkel, Barbara [VerfasserIn]   i
 Försti, Asta [VerfasserIn]   i
 Zhang, Yan [VerfasserIn]   i
Titel:Polygenic risk scores for prediction of breast cancer and breast cancer subtypes
Verf.angabe:Nasim Mavaddat, Volker Arndt, Hermann Brenner, Barbara Burwinkel, Asta Försti, Rudolf Kaaks, Andreas Schneeweiss, Christof Sohn, Yan Zhang [und weitere]
Jahr:2019
Umfang:14 S.
Fussnoten:Published: December 13, 2018 ; Gesehen am 10.06.2019
Titel Quelle:Enthalten in: American journal of human genetics
Ort Quelle:New York, NY [u.a.] : Cell Press, 1949
Jahr Quelle:2019
Band/Heft Quelle:104(2019), 1, Seite 21-34
ISSN Quelle:0002-9297
Abstract:Stratification of women according to their risk of breast cancer based on polygenic risk scores (PRSs) could improve screening and prevention strategies. Our aim was to develop PRSs, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest available genome-wide association dataset and to empirically validate the PRSs in prospective studies. The development dataset comprised 94,075 case subjects and 75,017 control subjects of European ancestry from 69 studies, divided into training and validation sets. Samples were genotyped using genome-wide arrays, and single-nucleotide polymorphisms (SNPs) were selected by stepwise regression or lasso penalized regression. The best performing PRSs were validated in an independent test set comprising 11,428 case subjects and 18,323 control subjects from 10 prospective studies and 190,040 women from UK Biobank (3,215 incident breast cancers). For the best PRSs (313 SNPs), the odds ratio for overall disease per 1 standard deviation in ten prospective studies was 1.61 (95%CI: 1.57-1.65) with area under receiver-operator curve (AUC) = 0.630 (95%CI: 0.628-0.651). The lifetime risk of overall breast cancer in the top centile of the PRSs was 32.6%. Compared with women in the middle quintile, those in the highest 1% of risk had 4.37- and 2.78-fold risks, and those in the lowest 1% of risk had 0.16- and 0.27-fold risks, of developing ER-positive and ER-negative disease, respectively. Goodness-of-fit tests indicated that this PRS was well calibrated and predicts disease risk accurately in the tails of the distribution. This PRS is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs.
DOI:doi:10.1016/j.ajhg.2018.11.002
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1016/j.ajhg.2018.11.002
 Volltext: http://www.sciencedirect.com/science/article/pii/S0002929718304051
 DOI: https://doi.org/10.1016/j.ajhg.2018.11.002
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:breast
 cancer
 epidemiology
 genetic
 polygenic
 prediction
 risk
 score
 screening
 stratification
K10plus-PPN:166670461X
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68395334   QR-Code
zum Seitenanfang