Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Li, Zhenyou [VerfasserIn]   i
 Ottmann, Alexander [VerfasserIn]   i
 Sun, Qing [VerfasserIn]   i
 Kast, Anne [VerfasserIn]   i
 Meyer, Hans-Peter [VerfasserIn]   i
 Backes, Claudia [VerfasserIn]   i
 Schröder, Rasmus R. [VerfasserIn]   i
 Vaynzof, Yana [VerfasserIn]   i
 Klingeler, Rüdiger [VerfasserIn]   i
Titel:Hierarchical MoS2-carbon porous nanorods towards atomic interfacial engineering for high-performance lithium storage
Verf.angabe:Zhenyou Li, Alexander Ottmann, Qing Sun, Anne K. Kast, Kai Wang, Ting Zhang, Hans-Peter Meyer, Claudia Backes, Christian Kübel, Rasmus R. Schröder, Junhui Xiang, Yana Vaynzof and Rüdiger Klingeler
E-Jahr:2019
Jahr:06 March 2019
Umfang:12 S.
Fussnoten:Gesehen am 05.06.2019 ; Im Titel ist "2" tiefgestellt
Titel Quelle:Enthalten in: Journal of materials chemistry / A
Ort Quelle:London [u.a.] : RSC, 2013
Jahr Quelle:2019
Band/Heft Quelle:7(2019), 13, Seite 7553-7564
ISSN Quelle:2050-7496
Abstract:Hierarchical nanostructures have attracted considerable attention for rechargeable battery systems since they combine the benefits of size effects induced by nanoscaling with the integrity of bulk materials. Despite significant progress, the hierarchical structures reported so far are designed only down to the nanoscale. To improve the battery performance, downsizing the designed building blocks of the hierarchical structure to smaller scales (molecular or even atomic level) is essential. This novel concept has been realized in a MoS2/C composite system, where MoS2 and N-doped carbon molecular layers are alternately stacked to form nanosheet building blocks, which are further assembled into a porous nanorod structure. This hierarchical heterostructure converts the guiding principle of sub-nanoscale engineering into practice, aiming at increasing the interfaces between MoS2 and carbon towards the largest possible molecular contact level. The resultant MoS2/N-doped carbon porous nanorods (MoS2/NC-PNR) electrode exhibits outstanding performances in lithium-ion batteries including high initial discharge capacity of ∼1300 mA h g−1, cycling stability for 700 cycles and excellent rate performance (443 mA h g−1 at 10C). The outstanding performance of the MoS2/NC-PNR superstructure illustrates the enormous potential of the hierarchically designed 2D compounds from molecular layer level, which could be extended to other layered materials.
DOI:doi:10.1039/C8TA12293H
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext ; Verlag: https://doi.org/10.1039/C8TA12293H
 Volltext: https://pubs.rsc.org/en/content/articlelanding/2019/ta/c8ta12293h
 DOI: https://doi.org/10.1039/C8TA12293H
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1666860948
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/68396625   QR-Code
zum Seitenanfang